Other packages > Find by keyword >

xgboost  

Extreme Gradient Boosting
View on CRAN: Click here


Download and install xgboost package within the R console
Install from CRAN:
install.packages("xgboost")

Install from Github:
library("remotes")
install_github("cran/xgboost")

Install by package version:
library("remotes")
install_version("xgboost", "1.7.8.1")



Attach the package and use:
library("xgboost")
Maintained by
Jiaming Yuan
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2014-09-01
Latest Update: 2023-12-06
Description:
Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>. This package is its R interface. The package includes efficient linear model solver and tree learning algorithms. The package can automatically do parallel computation on a single machine which could be more than 10 times faster than existing gradient boosting packages. It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that users are also allowed to define their own objectives easily.
How to cite:
Jiaming Yuan (2014). xgboost: Extreme Gradient Boosting. R package version 1.7.8.1, https://cran.r-project.org/web/packages/xgboost. Accessed 06 Jan. 2025.
Previous versions and publish date:
0.3-0 (2014-09-01 19:47), 0.3-1 (2014-09-07 09:26), 0.3-2 (2014-09-07 21:54), 0.3-3 (2015-03-03 11:05), 0.4-1 (2015-08-01 01:24), 0.4-2 (2015-08-02 08:23), 0.4-3 (2016-02-15 14:41), 0.4-4 (2016-07-12 10:55), 0.6-0 (2016-12-16 09:25), 0.6-2 (2016-12-18 11:23), 0.6-3 (2016-12-31 22:01), 0.6-4 (2017-01-05 10:40), 0.6.4.1 (2018-01-23 22:57), 0.71.1 (2018-05-16 07:18), 0.71.2 (2018-06-09 06:24), 0.81.0.1 (2019-01-31 10:10), 0.82.1 (2019-03-12 00:40), 0.90.0.1 (2019-07-25 22:40), 0.90.0.2 (2019-08-01 21:20), 1.0.0.1 (2020-03-23 09:00), 1.0.0.2 (2020-03-25 15:10), 1.1.1.1 (2020-06-14 16:40), 1.2.0.1 (2020-09-02 07:40), 1.3.1.1 (2021-01-05 21:00), 1.3.2.1 (2021-01-18 11:10), 1.4.1.1 (2021-04-22 11:20), 1.5.0.1 (2021-11-08 09:00), 1.5.0.2 (2021-11-21 17:30), 1.5.2.1 (2022-02-21 11:00), 1.6.0.1 (2022-04-16 17:50), 1.7.3.1 (2023-01-14 22:20), 1.7.5.1 (2023-03-30 21:40), 1.7.6.1 (2023-12-06 09:50), 1.7.7.1 (2024-01-25 14:10)
Other packages that cited xgboost R package
View xgboost citation profile
Other R packages that xgboost depends, imports, suggests or enhances
Complete documentation for xgboost
Functions, R codes and Examples using the xgboost R package
Some associated functions: a-compatibility-note-for-saveRDS-save . agaricus.test . agaricus.train . callbacks . cb.cv.predict . cb.early.stop . cb.evaluation.log . cb.gblinear.history . cb.print.evaluation . cb.reset.parameters . cb.save.model . dim.xgb.DMatrix . dimnames.xgb.DMatrix . getinfo . normalize . predict.xgb.Booster . prepare.ggplot.shap.data . print.xgb.Booster . print.xgb.DMatrix . print.xgb.cv . setinfo . slice.xgb.DMatrix . xgb.Booster.complete . xgb.DMatrix . xgb.DMatrix.save . xgb.attr . xgb.config . xgb.create.features . xgb.cv . xgb.dump . xgb.gblinear.history . xgb.importance . xgb.load . xgb.load.raw . xgb.model.dt.tree . xgb.parameters . xgb.plot.deepness . xgb.plot.importance . xgb.plot.multi.trees . xgb.plot.shap . xgb.plot.shap.summary . xgb.plot.tree . xgb.save . xgb.save.raw . xgb.serialize . xgb.shap.data . xgb.train . xgb.unserialize . xgbConfig . xgboost-deprecated . 
Some associated R codes: callbacks.R . utils.R . xgb.Booster.R . xgb.DMatrix.R . xgb.DMatrix.save.R . xgb.config.R . xgb.create.features.R . xgb.cv.R . xgb.dump.R . xgb.ggplot.R . xgb.importance.R . xgb.load.R . xgb.load.raw.R . xgb.model.dt.tree.R . xgb.plot.deepness.R . xgb.plot.importance.R . xgb.plot.multi.trees.R . xgb.plot.shap.R . xgb.plot.tree.R . xgb.save.R . xgb.save.raw.R . xgb.serialize.R . xgb.train.R . xgb.unserialize.R . xgboost.R .  Full xgboost package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

lmds  
Landmark Multi-Dimensional Scaling
A fast dimensionality reduction method scaleable to large numbers of samples. Landmark Multi-Dime ...
Download / Learn more Package Citations See dependency  
RsqMed  
Total Mediation Effect Size Measure for High-Dimensional Mediators
An implementation of calculating the R-squared measure as a total mediation effect size measure and ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
NetSwan  
Network Strengths and Weaknesses Analysis
A set of functions for studying network robustness, resilience and vulnerability. ...
Download / Learn more Package Citations See dependency  
ROI.plugin.deoptim  
'DEoptim' and 'DEoptimR' Plugin for the 'R' Optimization Interface
Enhances the R Optimization Infrastructure ('ROI') package with the 'DEoptim' and 'DEoptimR' packag ...
Download / Learn more Package Citations See dependency  
mlr3fairness  
Fairness Auditing and Debiasing for 'mlr3'
Integrates fairness auditing and bias mitigation methods for the 'mlr3' ecosystem. This includes ...
Download / Learn more Package Citations See dependency  

23,440

R Packages

202,297

Dependencies

63,567

Author Associations

23,434

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA