Other packages > Find by keyword >

xgboost  

Extreme Gradient Boosting
View on CRAN: Click here


Download and install xgboost package within the R console
Install from CRAN:
install.packages("xgboost")

Install from Github:
library("remotes")
install_github("cran/xgboost")

Install by package version:
library("remotes")
install_version("xgboost", "1.7.10.1")



Attach the package and use:
library("xgboost")
Maintained by
Jiaming Yuan
[Scholar Profile | Author Map]
First Published: 2014-09-01
Latest Update: 2023-12-06
Description:
Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>. This package is its R interface. The package includes efficient linear model solver and tree learning algorithms. The package can automatically do parallel computation on a single machine which could be more than 10 times faster than existing gradient boosting packages. It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that users are also allowed to define their own objectives easily.
How to cite:
Jiaming Yuan (2014). xgboost: Extreme Gradient Boosting. R package version 1.7.10.1, https://cran.r-project.org/web/packages/xgboost. Accessed 07 May. 2025.
Previous versions and publish date:
0.3-0 (2014-09-01 19:47), 0.3-1 (2014-09-07 09:26), 0.3-2 (2014-09-07 21:54), 0.3-3 (2015-03-03 11:05), 0.4-1 (2015-08-01 01:24), 0.4-2 (2015-08-02 08:23), 0.4-3 (2016-02-15 14:41), 0.4-4 (2016-07-12 10:55), 0.6-0 (2016-12-16 09:25), 0.6-2 (2016-12-18 11:23), 0.6-3 (2016-12-31 22:01), 0.6-4 (2017-01-05 10:40), 0.6.4.1 (2018-01-23 22:57), 0.71.1 (2018-05-16 07:18), 0.71.2 (2018-06-09 06:24), 0.81.0.1 (2019-01-31 10:10), 0.82.1 (2019-03-12 00:40), 0.90.0.1 (2019-07-25 22:40), 0.90.0.2 (2019-08-01 21:20), 1.0.0.1 (2020-03-23 09:00), 1.0.0.2 (2020-03-25 15:10), 1.1.1.1 (2020-06-14 16:40), 1.2.0.1 (2020-09-02 07:40), 1.3.1.1 (2021-01-05 21:00), 1.3.2.1 (2021-01-18 11:10), 1.4.1.1 (2021-04-22 11:20), 1.5.0.1 (2021-11-08 09:00), 1.5.0.2 (2021-11-21 17:30), 1.5.2.1 (2022-02-21 11:00), 1.6.0.1 (2022-04-16 17:50), 1.7.3.1 (2023-01-14 22:20), 1.7.5.1 (2023-03-30 21:40), 1.7.6.1 (2023-12-06 09:50), 1.7.7.1 (2024-01-25 14:10), 1.7.8.1 (2024-07-24 20:40), 1.7.9.1 (2025-03-26 15:30)
Other packages that cited xgboost R package
View xgboost citation profile
Other R packages that xgboost depends, imports, suggests or enhances
Complete documentation for xgboost
Functions, R codes and Examples using the xgboost R package
Some associated functions: a-compatibility-note-for-saveRDS-save . agaricus.test . agaricus.train . callbacks . cb.cv.predict . cb.early.stop . cb.evaluation.log . cb.gblinear.history . cb.print.evaluation . cb.reset.parameters . cb.save.model . dim.xgb.DMatrix . dimnames.xgb.DMatrix . getinfo . normalize . predict.xgb.Booster . prepare.ggplot.shap.data . print.xgb.Booster . print.xgb.DMatrix . print.xgb.cv . setinfo . slice.xgb.DMatrix . xgb.Booster.complete . xgb.DMatrix . xgb.DMatrix.save . xgb.attr . xgb.config . xgb.create.features . xgb.cv . xgb.dump . xgb.gblinear.history . xgb.importance . xgb.load . xgb.load.raw . xgb.model.dt.tree . xgb.parameters . xgb.plot.deepness . xgb.plot.importance . xgb.plot.multi.trees . xgb.plot.shap . xgb.plot.shap.summary . xgb.plot.tree . xgb.save . xgb.save.raw . xgb.serialize . xgb.shap.data . xgb.train . xgb.unserialize . xgbConfig . xgboost-deprecated . 
Some associated R codes: callbacks.R . utils.R . xgb.Booster.R . xgb.DMatrix.R . xgb.DMatrix.save.R . xgb.config.R . xgb.create.features.R . xgb.cv.R . xgb.dump.R . xgb.ggplot.R . xgb.importance.R . xgb.load.R . xgb.load.raw.R . xgb.model.dt.tree.R . xgb.plot.deepness.R . xgb.plot.importance.R . xgb.plot.multi.trees.R . xgb.plot.shap.R . xgb.plot.tree.R . xgb.save.R . xgb.save.raw.R . xgb.serialize.R . xgb.train.R . xgb.unserialize.R . xgboost.R .  Full xgboost package functions and examples
Downloads during the last 30 days
04/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/1804/1904/2004/2104/2204/2304/2404/2504/2604/2704/2804/2904/3005/0105/0205/0305/0405/05Downloads for xgboost120014001600180020002200240026002800300032003400TrendBars

Today's Hot Picks in Authors and Packages

MLDS  
Maximum Likelihood Difference Scaling
Difference scaling is a method for scaling perceived supra-threshold differences. The package cont ...
Download / Learn more Package Citations See dependency  
aroma.affymetrix  
Analysis of Large Affymetrix Microarray Data Sets
A cross-platform R framework that facilitates processing of any number of Affymetrix microarray samp ...
Download / Learn more Package Citations See dependency  
humanize  
Create Values for Human Consumption
An almost direct port of the 'python' 'humanize' package . Thi ...
Download / Learn more Package Citations See dependency  
funLBM  
Model-Based Co-Clustering of Functional Data
The funLBM algorithm allows to simultaneously cluster the rows and the columns of a data matrix wher ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

24,205

R Packages

207,311

Dependencies

65,312

Author Associations

24,206

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA