Other packages > Find by keyword >

xgboost  

Extreme Gradient Boosting
View on CRAN: Click here


Download and install xgboost package within the R console
Install from CRAN:
install.packages("xgboost")

Install from Github:
library("remotes")
install_github("cran/xgboost")

Install by package version:
library("remotes")
install_version("xgboost", "1.7.8.1")



Attach the package and use:
library("xgboost")
Maintained by
Jiaming Yuan
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2014-09-01
Latest Update: 2023-12-06
Description:
Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>. This package is its R interface. The package includes efficient linear model solver and tree learning algorithms. The package can automatically do parallel computation on a single machine which could be more than 10 times faster than existing gradient boosting packages. It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that users are also allowed to define their own objectives easily.
How to cite:
Jiaming Yuan (2014). xgboost: Extreme Gradient Boosting. R package version 1.7.8.1, https://cran.r-project.org/web/packages/xgboost. Accessed 03 Dec. 2024.
Previous versions and publish date:
0.3-0 (2014-09-01 19:47), 0.3-1 (2014-09-07 09:26), 0.3-2 (2014-09-07 21:54), 0.3-3 (2015-03-03 11:05), 0.4-1 (2015-08-01 01:24), 0.4-2 (2015-08-02 08:23), 0.4-3 (2016-02-15 14:41), 0.4-4 (2016-07-12 10:55), 0.6-0 (2016-12-16 09:25), 0.6-2 (2016-12-18 11:23), 0.6-3 (2016-12-31 22:01), 0.6-4 (2017-01-05 10:40), 0.6.4.1 (2018-01-23 22:57), 0.71.1 (2018-05-16 07:18), 0.71.2 (2018-06-09 06:24), 0.81.0.1 (2019-01-31 10:10), 0.82.1 (2019-03-12 00:40), 0.90.0.1 (2019-07-25 22:40), 0.90.0.2 (2019-08-01 21:20), 1.0.0.1 (2020-03-23 09:00), 1.0.0.2 (2020-03-25 15:10), 1.1.1.1 (2020-06-14 16:40), 1.2.0.1 (2020-09-02 07:40), 1.3.1.1 (2021-01-05 21:00), 1.3.2.1 (2021-01-18 11:10), 1.4.1.1 (2021-04-22 11:20), 1.5.0.1 (2021-11-08 09:00), 1.5.0.2 (2021-11-21 17:30), 1.5.2.1 (2022-02-21 11:00), 1.6.0.1 (2022-04-16 17:50), 1.7.3.1 (2023-01-14 22:20), 1.7.5.1 (2023-03-30 21:40), 1.7.6.1 (2023-12-06 09:50), 1.7.7.1 (2024-01-25 14:10)
Other packages that cited xgboost R package
View xgboost citation profile
Other R packages that xgboost depends, imports, suggests or enhances
Complete documentation for xgboost
Functions, R codes and Examples using the xgboost R package
Some associated functions: a-compatibility-note-for-saveRDS-save . agaricus.test . agaricus.train . callbacks . cb.cv.predict . cb.early.stop . cb.evaluation.log . cb.gblinear.history . cb.print.evaluation . cb.reset.parameters . cb.save.model . dim.xgb.DMatrix . dimnames.xgb.DMatrix . getinfo . normalize . predict.xgb.Booster . prepare.ggplot.shap.data . print.xgb.Booster . print.xgb.DMatrix . print.xgb.cv . setinfo . slice.xgb.DMatrix . xgb.Booster.complete . xgb.DMatrix . xgb.DMatrix.save . xgb.attr . xgb.config . xgb.create.features . xgb.cv . xgb.dump . xgb.gblinear.history . xgb.importance . xgb.load . xgb.load.raw . xgb.model.dt.tree . xgb.parameters . xgb.plot.deepness . xgb.plot.importance . xgb.plot.multi.trees . xgb.plot.shap . xgb.plot.shap.summary . xgb.plot.tree . xgb.save . xgb.save.raw . xgb.serialize . xgb.shap.data . xgb.train . xgb.unserialize . xgbConfig . xgboost-deprecated . 
Some associated R codes: callbacks.R . utils.R . xgb.Booster.R . xgb.DMatrix.R . xgb.DMatrix.save.R . xgb.config.R . xgb.create.features.R . xgb.cv.R . xgb.dump.R . xgb.ggplot.R . xgb.importance.R . xgb.load.R . xgb.load.raw.R . xgb.model.dt.tree.R . xgb.plot.deepness.R . xgb.plot.importance.R . xgb.plot.multi.trees.R . xgb.plot.shap.R . xgb.plot.tree.R . xgb.save.R . xgb.save.raw.R . xgb.serialize.R . xgb.train.R . xgb.unserialize.R . xgboost.R .  Full xgboost package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
FSInteract  
Fast Searches for Interactions
Performs fast detection of interactions in large-scale data using the method of random intersection ...
Download / Learn more Package Citations See dependency  
telemac  
R Interface to the TELEMAC Model Suite
An R interface to the TELEMAC suite for modelling of free surface flow. This includes methods for m ...
Download / Learn more Package Citations See dependency  
donut  
Nearest Neighbour Search with Variables on a Torus
Finds the k nearest neighbours in a dataset of specified points, adding the option to wrap certain ...
Download / Learn more Package Citations See dependency  
CRANsearcher  
RStudio Addin for Searching Packages in CRAN Database Based on Keywords
One of the strengths of R is its vast package ecosystem. Indeed, R packages extend from visualizatio ...
Download / Learn more Package Citations See dependency  
EDOtrans  
Euclidean Distance-Optimized Data Transformation
A data transformation method which takes into account the special property of scale non-invariance w ...
Download / Learn more Package Citations See dependency  

23,310

R Packages

200,798

Dependencies

63,203

Author Associations

23,278

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA