Other packages > Find by keyword >

sits  

Satellite Image Time Series Analysis for Earth Observation Data Cubes
View on CRAN: Click here


Download and install sits package within the R console
Install from CRAN:
install.packages("sits")

Install from Github:
library("remotes")
install_github("cran/sits")

Install by package version:
library("remotes")
install_version("sits", "1.5.1")



Attach the package and use:
library("sits")
Maintained by
Gilberto Camara
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2022-05-19
Latest Update: 2023-11-02
Description:
An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>. Builds regular data cubes from collections in AWS, Microsoft Planetary Computer, Brazil Data Cube, and Digital Earth Africa using the Spatio-temporal Asset Catalog (STAC) protocol (<https://stacspec.org/> and the 'gdalcubes' R package developed by Appel and Pebesma (2019) <doi:10.3390/data4030092>. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Includes functions for quality assessment of training samples using self-organized maps as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>. Provides machine learning methods including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>, residual networks by Fawaz et al (2019) <doi:10.1007/s10618-019-00619-1>, and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference, and methods for uncertainty assessment. Enables best practices for estimating area and assessing accuracy of land change as recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.
How to cite:
Gilberto Camara (2022). sits: Satellite Image Time Series Analysis for Earth Observation Data Cubes. R package version 1.5.1, https://cran.r-project.org/web/packages/sits. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.0.0 (2022-05-19 09:00), 1.1.0 (2022-07-07 22:00), 1.2.0 (2022-11-16 20:20), 1.3.0 (2023-03-17 19:10), 1.4.0 (2023-05-17 18:50), 1.4.1 (2023-06-13 00:50), 1.4.2-1 (2023-11-02 16:10), 1.4.2 (2023-10-28 16:50), 1.5.0 (2024-05-09 21:00)
Other packages that cited sits R package
View sits citation profile
Other R packages that sits depends, imports, suggests or enhances
Complete documentation for sits
Functions, R codes and Examples using the sits R package
Some associated functions: cerrado_2classes . dot-check_date_parameter . plot.class_cube . plot.class_vector_cube . plot.geo_distances . plot . plot.patterns . plot.predicted . plot.probs_cube . plot.probs_vector_cube . plot.raster_cube . plot.rfor_model . plot.sits_accuracy . plot.sits_cluster . plot.som_evaluate_cluster . plot.som_map . plot.torch_model . plot.uncertainty_cube . plot.variance_cube . plot.vector_cube . plot.xgb_model . point_mt_6bands . print.sits_accuracy . print.sits_area_accuracy . samples_l8_rondonia_2bands . samples_modis_ndvi . sits-package . sits_accuracy . sits_accuracy_summary . sits_apply . sits_as_sf . sits_bands . sits_bbox . sits_classify . sits_cluster_clean . sits_cluster_dendro . sits_cluster_frequency . sits_colors . sits_colors_qgis . sits_colors_reset . sits_colors_set . sits_colors_show . sits_combine_predictions . sits_confidence_sampling . sits_config . sits_config_show . sits_cube . sits_cube_copy . sits_factory_function . sits_filter . sits_formula_linear . sits_formula_logref . sits_geo_dist . sits_get_data . sits_kfold_validate . sits_label_classification . sits_labels . sits_labels_summary . sits_lighttae . sits_list_collections . sits_merge . sits_mixture_model . sits_mlp . sits_model_export . sits_mosaic . sits_patterns . sits_pred_features . sits_pred_normalize . sits_pred_reference . sits_pred_sample . sits_predictors . sits_reclassify . sits_reduce_imbalance . sits_regularize . sits_resnet . sits_rfor . sits_run_examples . sits_run_tests . sits_sample . sits_segment . sits_select . sits_sgolay . sits_show_prediction . sits_slic . sits_smooth . sits_som . sits_som_clean_samples . sits_som_evaluate_cluster . sits_stats . sits_svm . sits_tae . sits_tempcnn . sits_timeline . sits_to_csv . sits_to_xlsx . sits_train . sits_tuning . sits_tuning_hparams . sits_uncertainty . sits_uncertainty_sampling . sits_validate . sits_variance . sits_view . sits_whittaker . sits_xgboost . summary.class_cube . summary.raster_cube . summary.sits . summary.sits_accuracy . summary.sits_area_accuracy . tick-sits_labels-set-tick . 
Some associated R codes: RcppExports.R . api_accessors.R . api_accuracy.R . api_apply.R . api_band.R . api_bbox.R . api_block.R . api_check.R . api_chunks.R . api_classify.R . api_clean.R . api_cluster.R . api_colors.R . api_combine_predictions.R . api_comp.R . api_conf.R . api_csv.R . api_cube.R . api_data.R . api_debug.R . api_download.R . api_factory.R . api_file.R . api_file_info.R . api_gdal.R . api_gdalcubes.R . api_imputation.R . api_jobs.R . api_label_class.R . api_mixture_model.R . api_ml_model.R . api_mosaic.R . api_parallel.R . api_period.R . api_plot_raster.R . api_plot_time_series.R . api_plot_vector.R . api_point.R . api_predictors.R . api_raster.R . api_raster_sub_image.R . api_raster_terra.R . api_reclassify.R . api_regularize.R . api_roi.R . api_s2tile.R . api_samples.R . api_segments.R . api_sf.R . api_shp.R . api_signal.R . api_smooth.R . api_smote.R . api_som.R . api_source.R . api_source_aws.R . api_source_bdc.R . api_source_deafrica.R . api_source_hls.R . api_source_local.R . api_source_mpc.R . api_source_sdc.R . api_source_stac.R . api_source_usgs.R . api_space_time_operations.R . api_stac.R . api_stats.R . api_summary.R . api_tibble.R . api_tile.R . api_timeline.R . api_torch.R . api_torch_psetae.R . api_ts.R . api_tuning.R . api_uncertainty.R . api_utils.R . api_values.R . api_variance.R . api_vector.R . api_vector_info.R . api_view.R . data.R . sits-package.R . sits_accuracy.R . sits_active_learning.R . sits_apply.R . sits_bands.R . sits_bbox.R . sits_classify.R . sits_cluster.R . sits_colors.R . sits_combine_predictions.R . sits_config.R . sits_csv.R . sits_cube.R . sits_cube_copy.R . sits_factory.R . sits_filters.R . sits_geo_dist.R . sits_get_data.R . sits_label_classification.R . sits_labels.R . sits_lighttae.R . sits_machine_learning.R . sits_merge.R . sits_mixture_model.R . sits_mlp.R . sits_model_export.R . sits_mosaic.R . sits_patterns.R . sits_plot.R . sits_predictors.R . sits_reclassify.R . sits_regularize.R . sits_resnet.R . sits_sample_functions.R . sits_segmentation.R . sits_select.R . sits_sf.R . sits_smooth.R . sits_som.R . sits_summary.R . sits_tae.R . sits_tempcnn.R . sits_timeline.R . sits_train.R . sits_tuning.R . sits_uncertainty.R . sits_utils.R . sits_validate.R . sits_variance.R . sits_view.R . sits_xlsx.R . zzz.R .  Full sits package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA