Other packages > Find by keyword >

shrinkem  

Approximate Bayesian Regularization for Parsimonious Estimates
View on CRAN: Click here


Download and install shrinkem package within the R console
Install from CRAN:
install.packages("shrinkem")

Install from Github:
library("remotes")
install_github("cran/shrinkem")

Install by package version:
library("remotes")
install_version("shrinkem", "0.2.0")



Attach the package and use:
library("shrinkem")
Maintained by
Joris Mulder
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2024-10-05
Latest Update: 2024-10-05
Description:
Approximate Bayesian regularization using Gaussian approximations. The input is a vector of estimates and a Gaussian error covariance matrix of the key parameters. Bayesian shrinkage is then applied to obtain parsimonious solutions. The method is described on Karimova, van Erp, Leenders, and Mulder (2024) <doi:10.31234/osf.io/2g8qm>. Gibbs samplers are used for model fitting. The shrinkage priors that are supported are Gaussian (ridge) priors, Laplace (lasso) priors (Park and Casella, 2008 <doi:10.1198/016214508000000337>), and horseshoe priors (Carvalho, et al., 2010; <doi:10.1093/biomet/asq017>). These priors include an option for grouped regularization of different subsets of parameters (Meier et al., 2008; <doi:10.1111/j.1467-9868.2007.00627.x>). F priors are used for the penalty parameters lambda^2 (Mulder and Pericchi, 2018 <doi:10.1214/17-BA1092>). This correspond to half-Cauchy priors on lambda (Carvalho, Polson, Scott, 2010 <doi:10.1093/biomet/asq017>).
How to cite:
Joris Mulder (2024). shrinkem: Approximate Bayesian Regularization for Parsimonious Estimates. R package version 0.2.0, https://cran.r-project.org/web/packages/shrinkem. Accessed 22 Dec. 2024.
Previous versions and publish date:
No previous versions
Other packages that cited shrinkem R package
View shrinkem citation profile
Other R packages that shrinkem depends, imports, suggests or enhances
Complete documentation for shrinkem
Functions, R codes and Examples using the shrinkem R package
Full shrinkem package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA