Other packages > Find by keyword >

scITD  

Single-Cell Interpretable Tensor Decomposition
View on CRAN: Click here


Download and install scITD package within the R console
Install from CRAN:
install.packages("scITD")

Install from Github:
library("remotes")
install_github("cran/scITD")

Install by package version:
library("remotes")
install_version("scITD", "1.0.4")



Attach the package and use:
library("scITD")
Maintained by
Jonathan Mitchel
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2021-11-03
Latest Update: 2022-03-23
Description:
Single-cell Interpretable Tensor Decomposition (scITD) employs the Tucker tensor decomposition to extract multicell-type gene expression patterns that vary across donors/individuals. This tool is geared for use with single-cell RNA-sequencing datasets consisting of many source donors. The method has a wide range of potential applications, including the study of inter-individual variation at the population-level, patient sub-grouping/stratification, and the analysis of sample-level batch effects. Each "multicellular process" that is extracted consists of (A) a multi cell type gene loadings matrix and (B) a corresponding donor scores vector indicating the level at which the corresponding loadings matrix is expressed in each donor. Additional methods are implemented to aid in selecting an appropriate number of factors and to evaluate stability of the decomposition. Additional tools are provided for downstream analysis, including integration of gene set enrichment analysis and ligand-receptor analysis. Tucker, L.R. (1966) . Unkel, S., Hannachi, A., Trendafilov, N. T., & Jolliffe, I. T. (2011) . Zhou, G., & Cichocki, A. (2012) .
How to cite:
Jonathan Mitchel (2021). scITD: Single-Cell Interpretable Tensor Decomposition. R package version 1.0.4, https://cran.r-project.org/web/packages/scITD. Accessed 30 Jan. 2025.
Previous versions and publish date:
1.0.0 (2021-11-03 21:00), 1.0.1 (2022-01-29 01:00), 1.0.2 (2022-03-23 19:20)
Other packages that cited scITD R package
View scITD citation profile
Other R packages that scITD depends, imports, suggests or enhances
Complete documentation for scITD
Functions, R codes and Examples using the scITD R package
Some associated functions: apply_combat . calculate_fiber_fstats . check_rec_pres . clean_data . colMeanVars . compare_decompositions . compute_LR_interact . compute_associations . compute_donor_props . convert_gn . count_word . determine_ranks_tucker . form_tensor . get_all_lds_factor_plots . get_callouts_annot . get_ctype_exp_var . get_ctype_prop_associations . get_ctype_subc_prop_associations . get_ctype_vargenes . get_donor_meta . get_factor_exp_var . get_fstats_pvals . get_gene_modules . get_gene_set_vectors . get_indv_subtype_associations . get_intersecting_pathways . get_leading_edge_genes . get_lm_pvals . get_max_correlations . get_meta_associations . get_min_sig_genes . get_module_enr . get_normalized_variance . get_num_batch_ranks . get_one_factor . get_one_factor_gene_pvals . get_pseudobulk . get_real_fstats . get_reconstruct_errors_svd . get_significance_vectors . get_subclust_de_hmaps . get_subclust_enr_dotplot . get_subclust_enr_fig . get_subclust_enr_hmap . get_subclust_umap . get_subclusters . get_subtype_prop_associations . get_sums . ht_clusters . identify_sex_metadata . initialize_params . instantiate_scMinimal . is_GO_id . make_new_container . merge_small_clusts . nmf_unfolded . norm_var_helper . normalize_counts . normalize_pseudobulk . parse_data_by_ctypes . pca_unfolded . plotDEheatmap_conos . plot_donor_matrix . plot_donor_props . plot_donor_sig_genes . plot_dscore_enr . plot_gsea_hmap . plot_gsea_hmap_w_similarity . plot_gsea_sub . plot_loadings_annot . plot_mod_and_lig . plot_multi_module_enr . plot_rec_errors_bar_svd . plot_rec_errors_line_svd . plot_scores_by_meta . plot_select_sets . plot_stability_results . plot_subclust_associations . prep_LR_interact . project_new_data . reduce_dimensions . reduce_to_vargenes . render_multi_plots . reshape_loadings . run_fgsea . run_gsea_one_factor . run_hypergeometric_gsea . run_jackstraw . run_stability_analysis . run_tucker_ica . sample_fibers . scale_fontsize . scale_variance . seurat_to_scMinimal . shuffle_fibers . stack_tensor . stop_wrap . subset_scMinimal . test_container . tucker_ica_helper . update_params . vargenes_anova . 
Some associated R codes: RcppExports.R . convert_gn.R . data.R . determine_ranks_tucker.R . form_tensor.R . get_LR_interact.R . get_meta_associations.R . get_prop_associations.R . manage_container.R . manage_scMinimal.R . plot_tucker.R . run_gsea.R . run_jackstraw.R . run_tucker_ica.R . test_stability.R .  Full scITD package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

convertid  
Convert Gene IDs Between Each Other and Fetch Annotations from Biomart
Gene Symbols or Ensembl Gene IDs are converted using the Bimap interface in 'AnnotationDbi' in conve ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
fastmit  
Fast Mutual Information Based Independence Test
A mutual information estimator based on k-nearest neighbor method proposed by A. Kraskov, et al. (20 ...
Download / Learn more Package Citations See dependency  
GGMncv  
Gaussian Graphical Models with Nonconvex Regularization
Estimate Gaussian graphical models with nonconvex penalties , including ...
Download / Learn more Package Citations See dependency  
WtTopsis  
Weighted Method for Multiple-Criteria Decision Making
Evaluation of alternatives based on multiple criteria using weighted technique for Order preference ...
Download / Learn more Package Citations See dependency  
kesernetwork  
Visualization of the KESER Network
A shiny app to visualize the knowledge networks for the code concepts. Using co-occurrence matrices ...
Download / Learn more Package Citations See dependency  

23,580

R Packages

204,057

Dependencies

63,980

Author Associations

23,581

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA