R package citation, R package reverse dependencies, R package scholars, install an r package from GitHub hy is package acceptance pending why is package undeliverable amazon why is package on hold dhl tour packages why in r package r and r package full form why is r free why r is bad which r package to install which r package has which r package which r package version which r package readxl which r package ggplot which r package fread which r package license where is package.json where is package-lock.json where is package.swift where is package explorer in eclipse where is package where is package manager unity where is package installer android where is package manager console in visual studio who r package which r package to install which r package version who is package who is package deal who is package design r and r package full form r and r package meaning what r package has what package r what is package in java what is package what is package-lock.json what is package in python what is package.json what is package installer do r package can't install r packages r can't find package r can't load package can't load xlsx package r can't install psych package r can't install sf package r Write if else in NONMEM pk pd
frailtypack
View on CRAN: Click
here
Download and install frailtypack package within the R console
Install from CRAN:
install.packages("frailtypack")
Install from Github:
library("remotes")
install_github("cran/frailtypack")
Install by package version:
library("remotes")
install_version("frailtypack", "3.6.5")
Attach the package and use:
library("frailtypack")
Maintained by
Virginie Rondeau
[Scholar Profile | Author Map]
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2005-02-22
Latest Update: 2023-11-25
Description:
The following several classes of frailty models using a penalized likelihood estimation on the hazard function but also a parametric estimation can be fit using this R package:
1) A shared frailty model (with gamma or log-normal frailty distribution) and Cox proportional hazard model. Clustered and recurrent survival times can be studied.
2) Additive frailty models for proportional hazard models with two correlated random effects (intercept random effect with random slope).
3) Nested frailty models for hierarchically clustered data (with 2 levels of clustering) by including two iid gamma random effects.
4) Joint frailty models in the context of the joint modelling for recurrent events with terminal event for clustered data or not. A joint frailty model for two semi-competing risks and clustered data is also proposed.
5) Joint general frailty models in the context of the joint modelling for recurrent events with terminal event data with two independent frailty terms.
6) Joint Nested frailty models in the context of the joint modelling for recurrent events with terminal event, for hierarchically clustered data (with two levels of clustering) by including two iid gamma random effects.
7) Multivariate joint frailty models for two types of recurrent events and a terminal event.
8) Joint models for longitudinal data and a terminal event.
9) Trivariate joint models for longitudinal data, recurrent events and a terminal event.
10) Joint frailty models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time and/or longitudinal endpoints
with the possibility to use a mediation analysis model.
11) Conditional and Marginal two-part joint models for longitudinal semicontinuous data and a terminal event.
12) Joint frailty-copula models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints.
13) Generalized shared and joint frailty models for recurrent and terminal events. Proportional hazards (PH), additive hazard (AH), proportional odds (PO) and probit models are available in a fully parametric framework. For PH and AH models, it is possible to consider type-varying coefficients and flexible semiparametric hazard function.
Prediction values are available (for a terminal event or for a new recurrent event). Left-truncated (not for Joint model), right-censored data, interval-censored data (only for Cox proportional hazard and shared frailty model) and strata are allowed. In each model, the random effects have the gamma or normal distribution. Now, you can also consider time-varying covariates effects in Cox, shared and joint frailty models (1-5). The package includes concordance measures for Cox proportional hazards models and for shared frailty models.
14) Competing Joint Frailty Model: A single type of recurrent event and two terminal events.
Moreover, the package can be used with its shiny application, in a local mode or by following the link below.
How to cite:
Virginie Rondeau (2005). frailtypack: Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints. R package version 3.6.5, https://cran.r-project.org/web/packages/frailtypack. Accessed 30 Jan. 2025.
Previous versions and publish date:
0.8-1 (2005-02-22 10:39), 0.8-2 (2005-02-22 13:09), 1.0-0 (2005-03-26 22:55), 2.0-0 (2005-05-30 12:49), 2.0-1 (2005-11-18 20:06), 2.0-2 (2005-11-21 21:41), 2.1-1 (2008-07-28 08:12), 2.2-9.5 (2009-10-23 08:41), 2.2-12 (2010-01-11 08:50), 2.2-13 (2010-05-01 17:59), 2.2-14 (2010-05-18 15:36), 2.2-16 (2010-10-13 13:29), 2.2-17 (2011-08-03 08:47), 2.2-18 (2011-09-01 20:35), 2.2-19 (2011-10-24 21:02), 2.2-20 (2011-10-26 19:59), 2.2-21 (2012-02-06 13:18), 2.2-22 (2012-03-13 14:57), 2.2-23 (2012-04-05 16:52), 2.2-24 (2012-07-25 10:34), 2.2-25 (2012-09-06 16:10), 2.2-26 (2012-10-19 19:40), 2.2-27 (2012-11-27 10:35), 2.3 (2013-02-09 07:49), 2.4.1 (2013-04-26 21:50), 2.4 (2013-04-05 15:29), 2.5.1 (2014-02-13 14:31), 2.5 (2013-11-20 17:43), 2.6.1 (2014-07-23 12:12), 2.6 (2014-03-24 17:03), 2.7.1 (2014-10-08 12:21), 2.7.2 (2014-10-16 12:51), 2.7.4 (2015-02-26 02:09), 2.7.5 (2015-03-06 17:42), 2.7.6.1 (2015-09-01 17:44), 2.7 (2014-08-30 23:10), 2.8.1 (2015-11-21 15:56), 2.8.2 (2015-12-09 00:08), 2.8.3 (2016-01-13 09:59), 2.9.3.1 (2016-07-08 07:29), 2.9.3 (2016-07-07 13:47), 2.9.4 (2016-07-25 20:36), 2.10.3 (2016-10-19 13:07), 2.10.4 (2017-01-04 11:37), 2.10.5 (2017-02-03 08:13), 2.10.6 (2017-03-07 16:18), 2.11.0 (2017-03-11 00:16), 2.11.1 (2017-03-21 17:51), 2.12.1 (2017-06-16 19:57), 2.12.2 (2017-07-09 18:06), 2.12.3 (2017-08-01 21:00), 2.12.4 (2017-09-01 18:18), 2.12.5 (2017-09-21 15:27), 2.12.6 (2017-10-06 17:55), 2.12.7 (2018-07-30 13:00), 2.13.1 (2018-09-17 16:40), 2.13.2 (2018-09-25 12:50), 3.0.1 (2018-11-26 09:20), 3.0.2.1 (2019-01-07 20:11), 3.0.2 (2018-12-10 15:30), 3.0.3.1 (2019-03-04 17:30), 3.0.3.2.1 (2019-10-30 16:02), 3.0.3.2 (2019-05-16 17:30), 3.1.0.1 (2020-01-17 12:27), 3.1.0 (2020-01-16 14:20), 3.2.0.1 (2020-05-27 11:16), 3.2.0 (2020-04-12 16:50), 3.3.0 (2020-06-15 08:00), 3.3.2 (2020-10-14 11:00), 3.4.0 (2021-06-16 06:10), 3.5.0 (2021-12-20 11:30), 3.5.1 (2023-11-25 06:20), 3.6.0 (2024-03-15 22:50), 3.6.1 (2024-06-27 16:40), 3.6.2 (2024-07-07 18:10), 3.6.3 (2024-10-20 00:50), 3.6.4 (2024-11-15 18:30)
Other packages that cited frailtypack R package
View frailtypack citation profile
Other R packages that frailtypack depends,
imports, suggests or enhances
Complete documentation for frailtypack
Functions, R codes and Examples using
the frailtypack R package
Some associated functions: Cmeasures . Diffepoce . GenfrailtyPenal . SurvIC . additivePenal . bcos . cluster . colorectal . colorectalLongi . dataAdditive . dataMultiv . dataNCC . dataNested . dataOvarian . epoce . event2 . frailtyPenal . frailtypack-package . gastadj . hazard . jointSurrCopSimul . jointSurrSimul . jointSurroCopPenal . jointSurroPenal . jointSurroPenalSimul . jointSurroTKendall . longDat . longiPenal . loocv . multivPenal . num.id . plot.Diffepoce . plot.additivePenal . plot.epoce . plot.frailtyPenal . plot.jointNestedPenal . plot.jointPenal . plot.jointSurroMed . plot.jointSurroPenal . plot.jointSurroPenalloocv . plot.longiPenal . plot.multivPenal . plot.nestedPenal . plot.predFrailty . plot.predJoint . plot.predLongi . plot.trivPenal . plot.trivPenalNL . plotTreatPredJointSurro . predict.jointSurroPenal . prediction . print.Cmeasures . print.additivePenal . print.frailtyPenal . print.jointNestedPenal . print.jointPenal . print.jointSurroPenal . print.longiPenal . print.multivPenal . print.nestedPenal . print.prediction . print.trivPenal . print.trivPenalNL . readmission . runShiny . slope . ste . subcluster . summary.additivePenal . summary.frailtyPenal . summary.jointNestedPenal . summary.jointPenal . summary.jointSurroMed . summary.jointSurroPenal . summary.jointSurroPenalSimul . summary.longiPenal . summary.multivPenal . summary.nestedPenal . summary.trivPenal . summary.trivPenalNL . survDat . survival . terminal . timedep . trivPenal . trivPenalNL . wts .
Some associated R codes: Cmeasures.R . Diffepoce.R . GenfrailtyPenal.R . SurvIC.R . additivePenal.R . autresFonctions.R . cindexes.B.R . cindexes.R . cindexes.W.R . cindexes.frailty.R . cluster.R . dataHelp.R . epoce.R . evalOpenMPFortran.R . event2.R . factor.names.R . frailtyPenal.R . frailtypack-package.R . hazard.R . integrant.R . jointSurrCopSimul.R . jointSurrSimul.R . jointSurroCopPenal.R . jointSurroKendall.R . jointSurroPenal.R . jointSurroPenalSimul.R . jointSurroTKendall.R . lines.frailtyPenal.R . longiPenal.R . loocv.R . loocv.summary.R . mergeJointSurroSimul.R . multivPenal.R . num.id.R . plot.Diffepoce.R . plot.additivePenal.R . plot.epoce.R . plot.frailtyPenal.R . plot.jointNestedPenal.R . plot.jointPenal.R . plot.jointSurroMed.R . plot.jointSurroPenal.R . plot.jointSurroPenalloocv.R . plot.longiPenal.R . plot.multivPenal.R . plot.nestedPenal.additivePenal.R . plot.predFrailty.R . plot.predJoint.R . plot.predJointNested.R . plot.predLongi.R . plot.trivPenal.R . plot.trivPenalNL.R . plotTreatPredJointSurro.R . predict.jointSurroPenal.R . prediction.R . print.Cmeasures.R . print.Diffepoce.R . print.additivePenal.R . print.epoce.R . print.frailtyPenal.R . print.jointNestedPenal.R . print.jointPenal.R . print.jointSurroPenal.R . print.longiPenal.R . print.multivPenal.R . print.nestedPenal.R . print.predFrailty.R . print.predJoint.R . print.predJointNested.R . print.predLongi.R . print.trivPenal.R . print.trivPenalNL.R . runShiny.R . simulationPackages.R . slope.R . statFP.R . ste.R . subcluster.R . summary.additivePenal.R . summary.frailtyPenal.R . summary.jointNestedPenal.R . summary.jointPenal.R . summary.jointSurroMed.R . summary.jointSurroPenal.R . summary.jointSurroPenalSimul.R . summary.longiPenal.R . summary.multivPenal.R . summary.nestedPenal.R . summary.trivPenal.R . summary.trivPenalNL.R . survival.R . terminal.R . test.R . testOpenMPFortran.R . timedep.R . timedep.names.R . transfo.table.R . trivPenal.R . trivPenalNL.R . waldtest.R . wts.R . Full frailtypack package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by
helping add
Reviews / comments / questions /suggestions ↴↴↴
Today's Hot Picks in Authors and Packages
GGMncv
Estimate Gaussian graphical models with nonconvex penalties ,
including ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Donald Williams (view profile)
r2resize
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Obinna Obianom (view profile)
WtTopsis
Evaluation of alternatives based on multiple criteria using weighted technique for Order preference ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: zhengyu wu (view profile)
cinaR
Differential analyses and Enrichment pipeline for bulk 'ATAC-seq' data
analyses. This package combi ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Onur Karakaslar (view profile)
convertid
Gene Symbols or Ensembl Gene IDs are converted using the Bimap interface in 'AnnotationDbi' in conve ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Vidal Fey (view profile)
kesernetwork
A shiny app to visualize the knowledge networks for the code concepts. Using co-occurrence matrices ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Su-Chun Cheng (view profile)