Other packages > Find by keyword >

frailtypack  

Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints
View on CRAN: Click here


Download and install frailtypack package within the R console
Install from CRAN:
install.packages("frailtypack")

Install from Github:
library("remotes")
install_github("cran/frailtypack")

Install by package version:
library("remotes")
install_version("frailtypack", "3.6.5")



Attach the package and use:
library("frailtypack")
Maintained by
Virginie Rondeau
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2005-02-22
Latest Update: 2023-11-25
Description:
The following several classes of frailty models using a penalized likelihood estimation on the hazard function but also a parametric estimation can be fit using this R package: 1) A shared frailty model (with gamma or log-normal frailty distribution) and Cox proportional hazard model. Clustered and recurrent survival times can be studied. 2) Additive frailty models for proportional hazard models with two correlated random effects (intercept random effect with random slope). 3) Nested frailty models for hierarchically clustered data (with 2 levels of clustering) by including two iid gamma random effects. 4) Joint frailty models in the context of the joint modelling for recurrent events with terminal event for clustered data or not. A joint frailty model for two semi-competing risks and clustered data is also proposed. 5) Joint general frailty models in the context of the joint modelling for recurrent events with terminal event data with two independent frailty terms. 6) Joint Nested frailty models in the context of the joint modelling for recurrent events with terminal event, for hierarchically clustered data (with two levels of clustering) by including two iid gamma random effects. 7) Multivariate joint frailty models for two types of recurrent events and a terminal event. 8) Joint models for longitudinal data and a terminal event. 9) Trivariate joint models for longitudinal data, recurrent events and a terminal event. 10) Joint frailty models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time and/or longitudinal endpoints with the possibility to use a mediation analysis model. 11) Conditional and Marginal two-part joint models for longitudinal semicontinuous data and a terminal event. 12) Joint frailty-copula models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints. 13) Generalized shared and joint frailty models for recurrent and terminal events. Proportional hazards (PH), additive hazard (AH), proportional odds (PO) and probit models are available in a fully parametric framework. For PH and AH models, it is possible to consider type-varying coefficients and flexible semiparametric hazard function. Prediction values are available (for a terminal event or for a new recurrent event). Left-truncated (not for Joint model), right-censored data, interval-censored data (only for Cox proportional hazard and shared frailty model) and strata are allowed. In each model, the random effects have the gamma or normal distribution. Now, you can also consider time-varying covariates effects in Cox, shared and joint frailty models (1-5). The package includes concordance measures for Cox proportional hazards models and for shared frailty models. 14) Competing Joint Frailty Model: A single type of recurrent event and two terminal events. Moreover, the package can be used with its shiny application, in a local mode or by following the link below.
How to cite:
Virginie Rondeau (2005). frailtypack: Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints. R package version 3.6.5, https://cran.r-project.org/web/packages/frailtypack. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.8-1 (2005-02-22 10:39), 0.8-2 (2005-02-22 13:09), 1.0-0 (2005-03-26 22:55), 2.0-0 (2005-05-30 12:49), 2.0-1 (2005-11-18 20:06), 2.0-2 (2005-11-21 21:41), 2.1-1 (2008-07-28 08:12), 2.2-9.5 (2009-10-23 08:41), 2.2-12 (2010-01-11 08:50), 2.2-13 (2010-05-01 17:59), 2.2-14 (2010-05-18 15:36), 2.2-16 (2010-10-13 13:29), 2.2-17 (2011-08-03 08:47), 2.2-18 (2011-09-01 20:35), 2.2-19 (2011-10-24 21:02), 2.2-20 (2011-10-26 19:59), 2.2-21 (2012-02-06 13:18), 2.2-22 (2012-03-13 14:57), 2.2-23 (2012-04-05 16:52), 2.2-24 (2012-07-25 10:34), 2.2-25 (2012-09-06 16:10), 2.2-26 (2012-10-19 19:40), 2.2-27 (2012-11-27 10:35), 2.3 (2013-02-09 07:49), 2.4.1 (2013-04-26 21:50), 2.4 (2013-04-05 15:29), 2.5.1 (2014-02-13 14:31), 2.5 (2013-11-20 17:43), 2.6.1 (2014-07-23 12:12), 2.6 (2014-03-24 17:03), 2.7.1 (2014-10-08 12:21), 2.7.2 (2014-10-16 12:51), 2.7.4 (2015-02-26 02:09), 2.7.5 (2015-03-06 17:42), 2.7.6.1 (2015-09-01 17:44), 2.7 (2014-08-30 23:10), 2.8.1 (2015-11-21 15:56), 2.8.2 (2015-12-09 00:08), 2.8.3 (2016-01-13 09:59), 2.9.3.1 (2016-07-08 07:29), 2.9.3 (2016-07-07 13:47), 2.9.4 (2016-07-25 20:36), 2.10.3 (2016-10-19 13:07), 2.10.4 (2017-01-04 11:37), 2.10.5 (2017-02-03 08:13), 2.10.6 (2017-03-07 16:18), 2.11.0 (2017-03-11 00:16), 2.11.1 (2017-03-21 17:51), 2.12.1 (2017-06-16 19:57), 2.12.2 (2017-07-09 18:06), 2.12.3 (2017-08-01 21:00), 2.12.4 (2017-09-01 18:18), 2.12.5 (2017-09-21 15:27), 2.12.6 (2017-10-06 17:55), 2.12.7 (2018-07-30 13:00), 2.13.1 (2018-09-17 16:40), 2.13.2 (2018-09-25 12:50), 3.0.1 (2018-11-26 09:20), 3.0.2.1 (2019-01-07 20:11), 3.0.2 (2018-12-10 15:30), 3.0.3.1 (2019-03-04 17:30), 3.0.3.2.1 (2019-10-30 16:02), 3.0.3.2 (2019-05-16 17:30), 3.1.0.1 (2020-01-17 12:27), 3.1.0 (2020-01-16 14:20), 3.2.0.1 (2020-05-27 11:16), 3.2.0 (2020-04-12 16:50), 3.3.0 (2020-06-15 08:00), 3.3.2 (2020-10-14 11:00), 3.4.0 (2021-06-16 06:10), 3.5.0 (2021-12-20 11:30), 3.5.1 (2023-11-25 06:20), 3.6.0 (2024-03-15 22:50), 3.6.1 (2024-06-27 16:40), 3.6.2 (2024-07-07 18:10), 3.6.3 (2024-10-20 00:50), 3.6.4 (2024-11-15 18:30)
Other packages that cited frailtypack R package
View frailtypack citation profile
Other R packages that frailtypack depends, imports, suggests or enhances
Complete documentation for frailtypack
Functions, R codes and Examples using the frailtypack R package
Some associated functions: Cmeasures . Diffepoce . GenfrailtyPenal . SurvIC . additivePenal . bcos . cluster . colorectal . colorectalLongi . dataAdditive . dataMultiv . dataNCC . dataNested . dataOvarian . epoce . event2 . frailtyPenal . frailtypack-package . gastadj . hazard . jointSurrCopSimul . jointSurrSimul . jointSurroCopPenal . jointSurroPenal . jointSurroPenalSimul . jointSurroTKendall . longDat . longiPenal . loocv . multivPenal . num.id . plot.Diffepoce . plot.additivePenal . plot.epoce . plot.frailtyPenal . plot.jointNestedPenal . plot.jointPenal . plot.jointSurroMed . plot.jointSurroPenal . plot.jointSurroPenalloocv . plot.longiPenal . plot.multivPenal . plot.nestedPenal . plot.predFrailty . plot.predJoint . plot.predLongi . plot.trivPenal . plot.trivPenalNL . plotTreatPredJointSurro . predict.jointSurroPenal . prediction . print.Cmeasures . print.additivePenal . print.frailtyPenal . print.jointNestedPenal . print.jointPenal . print.jointSurroPenal . print.longiPenal . print.multivPenal . print.nestedPenal . print.prediction . print.trivPenal . print.trivPenalNL . readmission . runShiny . slope . ste . subcluster . summary.additivePenal . summary.frailtyPenal . summary.jointNestedPenal . summary.jointPenal . summary.jointSurroMed . summary.jointSurroPenal . summary.jointSurroPenalSimul . summary.longiPenal . summary.multivPenal . summary.nestedPenal . summary.trivPenal . summary.trivPenalNL . survDat . survival . terminal . timedep . trivPenal . trivPenalNL . wts . 
Some associated R codes: Cmeasures.R . Diffepoce.R . GenfrailtyPenal.R . SurvIC.R . additivePenal.R . autresFonctions.R . cindexes.B.R . cindexes.R . cindexes.W.R . cindexes.frailty.R . cluster.R . dataHelp.R . epoce.R . evalOpenMPFortran.R . event2.R . factor.names.R . frailtyPenal.R . frailtypack-package.R . hazard.R . integrant.R . jointSurrCopSimul.R . jointSurrSimul.R . jointSurroCopPenal.R . jointSurroKendall.R . jointSurroPenal.R . jointSurroPenalSimul.R . jointSurroTKendall.R . lines.frailtyPenal.R . longiPenal.R . loocv.R . loocv.summary.R . mergeJointSurroSimul.R . multivPenal.R . num.id.R . plot.Diffepoce.R . plot.additivePenal.R . plot.epoce.R . plot.frailtyPenal.R . plot.jointNestedPenal.R . plot.jointPenal.R . plot.jointSurroMed.R . plot.jointSurroPenal.R . plot.jointSurroPenalloocv.R . plot.longiPenal.R . plot.multivPenal.R . plot.nestedPenal.additivePenal.R . plot.predFrailty.R . plot.predJoint.R . plot.predJointNested.R . plot.predLongi.R . plot.trivPenal.R . plot.trivPenalNL.R . plotTreatPredJointSurro.R . predict.jointSurroPenal.R . prediction.R . print.Cmeasures.R . print.Diffepoce.R . print.additivePenal.R . print.epoce.R . print.frailtyPenal.R . print.jointNestedPenal.R . print.jointPenal.R . print.jointSurroPenal.R . print.longiPenal.R . print.multivPenal.R . print.nestedPenal.R . print.predFrailty.R . print.predJoint.R . print.predJointNested.R . print.predLongi.R . print.trivPenal.R . print.trivPenalNL.R . runShiny.R . simulationPackages.R . slope.R . statFP.R . ste.R . subcluster.R . summary.additivePenal.R . summary.frailtyPenal.R . summary.jointNestedPenal.R . summary.jointPenal.R . summary.jointSurroMed.R . summary.jointSurroPenal.R . summary.jointSurroPenalSimul.R . summary.longiPenal.R . summary.multivPenal.R . summary.nestedPenal.R . summary.trivPenal.R . summary.trivPenalNL.R . survival.R . terminal.R . test.R . testOpenMPFortran.R . timedep.R . timedep.names.R . transfo.table.R . trivPenal.R . trivPenalNL.R . waldtest.R . wts.R .  Full frailtypack package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA