Other packages > Find by keyword >

meerva  

Analysis of Data with Measurement Error Using a Validation Subsample
View on CRAN: Click here


Download and install meerva package within the R console
Install from CRAN:
install.packages("meerva")

Install from Github:
library("remotes")
install_github("cran/meerva")

Install by package version:
library("remotes")
install_version("meerva", "0.2-2")



Attach the package and use:
library("meerva")
Maintained by
Walter K Kremers
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2021-04-19
Latest Update: 2021-10-27
Description:
Sometimes data for analysis are obtained using more convenient or less expensive means yielding "surrogate" variables for what could be obtained more accurately, albeit with less convenience; or less conveniently or at more expense yielding "reference" variables, thought of as being measured without error. Analysis of the surrogate variables measured with error generally yields biased estimates when the objective is to make inference about the reference variables. Often it is thought that ignoring the measurement error in surrogate variables only biases effects toward the null hypothesis, but this need not be the case. Measurement errors may bias parameter estimates either toward or away from the null hypothesis. If one has a data set with surrogate variable data from the full sample, and also reference variable data from a randomly selected subsample, then one can assess the bias introduced by measurement error in parameter estimation, and use this information to derive improved estimates based upon all available data. Formulaically these estimates based upon the reference variables from the validation subsample combined with the surrogate variables from the whole sample can be interpreted as starting with the estimate from reference variables in the validation subsample, and "augmenting" this with additional information from the surrogate variables. This suggests the term "augmented" estimate. The meerva package calculates these augmented estimates in the regression setting when there is a randomly selected subsample with both surrogate and reference variables. Measurement errors may be differential or non-differential, in any or all predictors (simultaneously) as well as outcome. The augmented estimates derive, in part, from the multivariate correlation between regression model parameter estimates from the reference variables and the surrogate variables, both from the validation subset. Because the validation subsample is chosen at random any biases imposed by measurement error, whether non-differential or differential, are reflected in this correlation and these correlations can be used to derive estimates for the reference variables using data from the whole sample. The main functions in the package are meerva.fit which calculates estimates for a dataset, and meerva.sim.block which simulates multiple datasets as described by the user, and analyzes these datasets, storing the regression coefficient estimates for inspection. The augmented estimates, as well as how measurement error may arise in practice, is described in more detail by Kremers WK (2021) and is an extension of the works by Chen Y-H, Chen H. (2000) , Chen Y-H. (2002) , Wang X, Wang Q (2015) and Tong J, Huang J, Chubak J, et al. (2020) .
How to cite:
Walter K Kremers (2021). meerva: Analysis of Data with Measurement Error Using a Validation Subsample. R package version 0.2-2, https://cran.r-project.org/web/packages/meerva. Accessed 21 Nov. 2024.
Previous versions and publish date:
0.1-1 (2021-04-19 10:00), 0.1-2 (2021-04-27 15:20), 0.2-1 (2021-05-13 07:40)
Other packages that cited meerva R package
View meerva citation profile
Other R packages that meerva depends, imports, suggests or enhances
Complete documentation for meerva
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

RcppHNSW  
'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest Neighbors
'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This package provides a minimal R int ...
Download / Learn more Package Citations See dependency  
SCBiclust  
Identifies Mean, Variance, and Hierarchically Clustered Biclusters
Identifies a bicluster, a submatrix of the data such that the features and observations within the s ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
kgschart  
KGS Rank Graph Parser
Restore underlining numeric data from rating history graph of KGS (an online platform of the game o ...
Download / Learn more Package Citations See dependency  
pkgdepends  
Package Dependency Resolution and Downloads
Find recursive dependencies of 'R' packages from various sources. Solve the dependencies to obtain ...
Download / Learn more Package Citations See dependency  
deductive  
Data Correction and Imputation Using Deductive Methods
Attempt to repair inconsistencies and missing values in data records by using information from vali ...
Download / Learn more Package Citations See dependency  

23,229

R Packages

199,929

Dependencies

62,984

Author Associations

23,230

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA