R package citation, R package reverse dependencies, R package scholars, install an r package from GitHub hy is package acceptance pending why is package undeliverable amazon why is package on hold dhl tour packages why in r package r and r package full form why is r free why r is bad which r package to install which r package has which r package which r package version which r package readxl which r package ggplot which r package fread which r package license where is package.json where is package-lock.json where is package.swift where is package explorer in eclipse where is package where is package manager unity where is package installer android where is package manager console in visual studio who r package which r package to install which r package version who is package who is package deal who is package design r and r package full form r and r package meaning what r package has what package r what is package in java what is package what is package-lock.json what is package in python what is package.json what is package installer do r package can't install r packages r can't find package r can't load package can't load xlsx package r can't install psych package r can't install sf package r Write if else in NONMEM pk pd
MXM
View on CRAN: Click
here
Download and install MXM package within the R console
Install from CRAN:
install.packages("MXM")
Install from Github:
library("remotes")
install_github("cran/MXM")
Install by package version:
library("remotes")
install_version("MXM", "1.5.5")
Attach the package and use:
library("MXM")
Maintained by
Konstantina Biza
[Scholar Profile | Author Map]
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2014-05-12
Latest Update: 2022-08-25
Description:
Many feature selection methods for a wide range of response variables, including minimal, statistically-equivalent and equally-predictive feature subsets. Bayesian network algorithms and related functions are also included. The package name 'MXM' stands for "Mens eX Machina", meaning "Mind from the Machine" in Latin. References: a) Lagani, V. and Athineou, G. and Farcomeni, A. and Tsagris, M. and Tsamardinos, I. (2017). Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets. Journal of Statistical Software, 80(7). . b) Tsagris, M., Lagani, V. and Tsamardinos, I. (2018). Feature selection for high-dimensional temporal data. BMC Bioinformatics, 19:17. . c) Tsagris, M., Borboudakis, G., Lagani, V. and Tsamardinos, I. (2018). Constraint-based causal discovery with mixed data. International Journal of Data Science and Analytics, 6(1): 19-30. . d) Tsagris, M., Papadovasilakis, Z., Lakiotaki, K. and Tsamardinos, I. (2018). Efficient feature selection on gene expression data: Which algorithm to use? BioRxiv. . e) Tsagris, M. (2019). Bayesian Network Learning with the PC Algorithm: An Improved and Correct Variation. Applied Artificial Intelligence, 33(2):101-123. . f) Tsagris, M. and Tsamardinos, I. (2019). Feature selection with the R package MXM. F1000Research 7: 1505. . g) Borboudakis, G. and Tsamardinos, I. (2019). Forward-Backward Selection with Early Dropping. Journal of Machine Learning Research 20: 1-39. h) The gamma-OMP algorithm for feature selection with application to gene expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 19(2): 1214-1224. .
How to cite:
Konstantina Biza (2014). MXM: Feature Selection (Including Multiple Solutions) and Bayesian Networks. R package version 1.5.5, https://cran.r-project.org/web/packages/MXM. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.1 (2014-05-12 18:19), 0.2.1 (2014-08-05 00:35), 0.2 (2014-08-01 12:37), 0.3.1 (2015-05-25 15:35), 0.3 (2015-02-12 17:29), 0.4.1 (2015-07-09 18:11), 0.4.2 (2015-07-27 15:15), 0.4.3 (2015-07-28 22:55), 0.4 (2015-07-01 16:06), 0.5 (2015-09-29 17:33), 0.7 (2016-03-04 14:53), 0.8.5 (2016-04-26 11:20), 0.8.7 (2016-05-23 06:34), 0.8.8 (2016-06-09 07:56), 0.8 (2016-03-23 00:38), 0.9.2 (2016-07-05 08:55), 0.9.3 (2016-07-10 15:22), 0.9.4 (2016-08-05 11:53), 0.9.5 (2016-11-02 18:15), 0.9.7 (2016-12-20 11:46), 0.9.8 (2017-02-20 15:12), 0.9.9 (2017-03-26 18:11), 1.0.0 (2017-09-04 12:14), 1.1.1 (2017-10-07 16:18), 1.1.5 (2017-10-09 11:13), 1.1 (2017-10-06 22:48), 1.2.5 (2017-11-15 10:00), 1.2 (2017-10-10 14:16), 1.3.0 (2017-11-16 13:18), 1.3.1 (2017-11-30 12:41), 1.3.2 (2018-02-13 23:12), 1.3.3 (2018-03-30 19:07), 1.3.4 (2018-05-24 13:56), 1.3.5 (2018-06-25 11:53), 1.3.7 (2018-07-26 18:20), 1.3.8 (2018-07-29 15:40), 1.3.9 (2018-08-27 12:34), 1.4.0 (2018-09-19 16:40), 1.4.1 (2018-11-23 12:20), 1.4.2 (2019-01-15 10:30), 1.4.3 (2019-05-27 09:30), 1.4.4 (2019-06-19 15:40), 1.4.5 (2019-12-06 16:30), 1.4.6 (2020-04-05 19:10), 1.4.7 (2020-05-06 17:50), 1.4.8 (2020-07-27 01:10), 1.4.9 (2020-09-04 00:42), 1.5.0 (2021-01-09 03:10), 1.5.1 (2021-02-23 15:50), 1.5.2 (2021-09-21 14:50), 1.5.4 (2022-06-06 22:00), 1.5.5 (2022-08-25 10:52)
Other packages that cited MXM R package
View MXM citation profile
Other R packages that MXM depends,
imports, suggests or enhances
Complete documentation for MXM
Functions, R codes and Examples using
the MXM R package
Some associated functions: MMPC.gee.output-class . MMPC.glmm.output-class . MMPCoutput-class . MXM-internal . MXM-package . MXMCondIndTests . Ness . SES.gee.output-class . SES.glmm . SES.glmm.output-class . SES . SES.timeclass . SESoutput-class . auc . bbc . beta.mod . beta.regs . bic.fsreg . bic.glm.fsreg . big.fbed.reg . big.gomp . bn.skel.utils . bs.reg . censIndCR . certificate.of.exclusion . ci.mm . cond.regs . condi . condis . conf.edge.lower . cor.drop1 . corfs.network . corgraph . cv.fbed.lmm.reg . cv.gomp . cv.ses . dag2eg . ebic.bsreg . ebic.glmm.bsreg . ebic.regs . equivdags . fbed.gee.reg . fbed.glmm.reg . fbed.reg . fbedreg.bic . findDescendants . fs.reg . gSquare . generatefolds . glm.bsreg . glm.fsreg . glmm.bsreg . glmm.ci.mm . gomp . group.mvbetas . iamb.bs . iamb . ida . is.dag . lm.fsreg . local.mmhc.skel . logiquant.regs . ma.ses . mammpc.output-class . mases.output-class . mb . mmhc.skel . mmmb . mmpc.glmm.model . mmpc.glmm2 . mmpc.or . mmpc.path . mmpc.timeclass.model . mmpc2 . mmpcbackphase . modeler . nei . ord.resid . ordinal.reg . partialcor . pc.or . pc.sel . pc.skel . permcor . pi0est . plotnetwork . pval.mixbeta . rdag . read.big.data . reg.fit . ridge.plot . ridge.reg . ridgereg.cv . ses.model . shd . sp.logiregs . supervised.pca . tc.plot . testIndBeta . testIndBinom . testIndClogit . testIndFisher . testIndGEEReg . testIndGLMMReg . testIndGamma . testIndLogistic . testIndPois . testIndReg . testIndSPML . testIndTimeLogistic . testIndTobit . topological_sort . transitiveClosure . triangles.search . undir.path . univregs . wald.logisticregs . zip.mod . zip.regs .
Some associated R codes: IdentifyEquivalence.R . IdentifyEquivalence.gee.R . IdentifyEquivalence.glmm.R . IdentifyEquivalence.ma.R . InternalMMPC.R . InternalMMPC.gee.R . InternalMMPC.glmm.R . InternalMMPC.timeclass.R . InternalSES.R . InternalSES.gee.R . InternalSES.glmm.R . InternalSES.timeclass.R . Internalmammpc.R . Internalmases.R . MMPC.R . MMPC.gee.R . MMPC.gee.output_script.R . MMPC.glmm.R . MMPC.glmm.output_script.R . MMPC.timeclass.R . MMPCoutput_script.R . Ness.R . SES.R . SES.gee.R . SES.gee.output_script.R . SES.glmm.R . SES.glmm.output_script.R . SES.timeclass.R . SESoutput_script.R . WaldOrdinal.R . apply_ideq.R . apply_ideq.glmm.R . apply_ideq.ma.R . auc.R . bbc.R . beta.bsreg.R . beta.fsreg.R . beta.fsreg_2.R . beta.mod.R . beta.reg.R . beta.regs.R . betamle.wei.R . bic.betafsreg.R . bic.clogit.fsreg.R . bic.fsreg.R . bic.gammafsreg.R . bic.glm.fsreg.R . bic.llr.fsreg.R . bic.mm.fsreg.R . bic.normlog.fsreg.R . bic.tobit.fsreg.R . bic.wr.fsreg.R . bic.zipfsreg.R . big.fbed.reg.R . big.gomp.R . big.gomp.path.R . big.model.R . big.score.univregs.R . bn.skel.utils.R . bn.skel.utils2.R . boot.gomp.R . bs.g2.R . bs.reg.R . bsreg.big.R . cat.ci.R . cat_condis.R . censIndCR.R . censIndER.R . censIndLLR.R . censIndWR.R . certificate.of.exclusion.R . certificate.of.exclusion2.R . ci.fast.R . ci.fast2.R . ci.mm.R . ci.mm2.R . clogit.bsreg.R . clogit.cv.ses.R . clogit.fsreg.R . clogit.fsreg_2.R . comb_condis.R . compare_p_values.R . cond.regs.R . condi.R . condis.R . conf.edge.lower.R . cor.bsreg.R . cor.drop1.R . corfbed.network.R . corfs.network.R . corgraph.R . cv.fbed.lmm.reg.R . cv.gomp.R . cv.mmpc.R . cv.permmmpc.R . cv.permses.R . cv.ses.R . cv.waldmmpc.R . cv.waldses.R . cvmmpc.par.R . cvpermmmpc.par.R . cvpermses.par.R . cvses.par.R . cvwaldmmpc.par.R . cvwaldses.par.R . dag2eg.R . dag_to_eg.R . dist.condi.R . distcor_condis.R . ebic.beta.bsreg.R . ebic.bsreg.R . ebic.clogit.bsreg.R . ebic.cr.bsreg.R . ebic.fbed.glmm.R . ebic.fbed.glmm.cr.R . ebic.fbed.glmm.ordinal.R . ebic.fbed.glmm.ordinal.reps.R . ebic.fbed.glmm.reps.R . ebic.fbed.lmm.R . ebic.fbed.lmm.reps.R . ebic.glm.bsreg.R . ebic.glmm.bsreg.R . ebic.glmm.cr.bsreg.R . ebic.glmm.ordinal.bsreg.R . ebic.glmm.ordinal.reps.bsreg.R . ebic.glmm.reps.bsreg.R . ebic.llr.bsreg.R . ebic.lm.bsreg.R . ebic.lmm.bsreg.R . ebic.lmm.reps.bsreg.R . ebic.mm.bsreg.R . ebic.model.R . ebic.multinom.bsreg.R . ebic.nb.bsreg.R . ebic.ordinal.bsreg.R . ebic.regs.R . ebic.spml.bsreg.R . ebic.tobit.bsreg.R . ebic.univregs.R . ebic.wr.bsreg.R . ebic.zip.bsreg.R . ebicScore.R . equivdags.R . fbed.ebic.R . fbed.g2.R . fbed.gee.reg.R . fbed.geeglm.R . fbed.geeglm.reps.R . fbed.geelm.R . fbed.geelm.reps.R . fbed.glmm.R . fbed.glmm.cr.R . fbed.glmm.nb.R . fbed.glmm.nb.reps.R . fbed.glmm.ordinal.R . fbed.glmm.ordinal.reps.R . fbed.glmm.reg.R . fbed.glmm.reps.R . fbed.lmm.R . fbed.lmm.reps.R . fbed.lr.R . fbed.reg.R . fbedreg.bic.R . findAncestors.R . findDescendants.R . fs.reg.R . fs.reg_2.R . gSquare.R . gammafsreg.R . gammafsreg_2.R . gee.ci.mm.R . gee.condregs.R . gee.mmhc.skel.R . gee.pc.skel.R . gee.univregs.R . generatefolds.R . glm.bsreg.R . glm.bsreg2.R . glm.fsreg.R . glm.fsreg_2.R . glmm.bsreg.R . glmm.ci.mm.R . glmm.condregs.R . glmm.cr.bsreg.R . glmm.mmhc.skel.R . glmm.nb.bsreg.R . glmm.nb.reps.bsreg.R . glmm.ordinal.bsreg.R . glmm.ordinal.reps.bsreg.R . glmm.pc.skel.R . glmm.reps.bsreg.R . glmm.univregs.R . gomp.R . gomp.path.R . group.mvbetas.R . iamb.R . iamb.betabs.R . iamb.bs.R . iamb.gammabs.R . iamb.glmbs.R . iamb.normlogbs.R . iamb.tobitbs.R . iamb.zipbs.R . ida.R . identifyTheEquivalent.R . identifyTheEquivalent.gee.R . identifyTheEquivalent.glmm.R . identifyTheEquivalent.ma.R . internaliamb.betabs.R . internaliamb.binombs.R . internaliamb.bs.R . internaliamb.gammabs.R . internaliamb.lmbs.R . internaliamb.mmbs.R . internaliamb.normlogbs.R . internaliamb.poisbs.R . internaliamb.tobitbs.R . internaliamb.zipbs.R . is.dag.R . kfbed.gee.reg.R . kfbed.glmm.reg.R . kfbed.reg.R . llr.bsreg.R . lm.fsreg.R . lm.fsreg_2.R . lmm.bsreg.R . lmm.reps.bsreg.R . local.mmhc.skel.R . logiquant.regs.R . ma.mmpc.R . ma.ses.R . mammpc.output_script.R . mases.output_script.R . max_min_assoc.R . max_min_assoc.gee.R . max_min_assoc.glmm.R . max_min_assoc.ma.R . mb.R . min_assoc.R . min_assoc.gee.R . min_assoc.glmm.R . min_assoc.ma.R . mm.fsreg.R . mm.fsreg_2.R . mmhc.skel.R . mmmb.R . mmpc.gee.model.R . mmpc.gee2.R . mmpc.glmm.model.R . mmpc.glmm2.R . mmpc.model.R . mmpc.or.R . mmpc.path.R . mmpc.timeclass.model.R . mmpc2.R . mmpcbackphase.R . modeler.R . nchoosek.R . nei.R . normlog.fsreg.R . normlog.fsreg_2.R . ord.resid.R . ordinal.reg.R . partialcor.R . pc.con.R . pc.or.R . pc.sel.R . pc.skel.R . pc.skel.boot.R . pearson_condis.R . pearson_condis.rob.R . perm.IdentifyEquivalence.R . perm.Internalmmpc.R . perm.Internalses.R . perm.apply_ideq.R . perm.betaregs.R . perm.identifyTheEquivalent.R . perm.max_min_assoc.R . perm.min_assoc.R . perm.mmpc.R . perm.mmpc.path.R . perm.ses.R . perm.univariateScore.R . perm.univregs.R . perm.zipregs.R . permBeta.R . permBinom.R . permCR.R . permClogit.R . permDcor.R . permER.R . permFisher.R . permGamma.R . permIGreg.R . permLLR.R . permLogistic.R . permMMFisher.R . permMMreg.R . permMVreg.R . permMultinom.R . permNB.R . permNormLog.R . permOrdinal.R . permPois.R . permRQ.R . permReg.R . permTobit.R . permWR.R . permZIP.R . permcor.R . permcorrels.R . permgSquare.R . pi0est.R . plotnetwork.R . pval.mixbeta.R . quasibinom.fsreg.R . quasibinom.fsreg_2.R . quasipois.fsreg.R . quasipois.fsreg_2.R . rdag.R . rdag2.R . read.big.data.R . reg.ebic.R . reg.fit.R . regbeta.R . regbetawei.R . regzinb.R . regzip.R . regzipwei.R . ridge.plot.R . ridge.reg.R . ridgereg.cv.R . rint.regs.R . rmdag.R . score.univregs.R . ses.gee.model.R . ses.glmm.model.R . ses.model.R . ses.timeclass.model.R . shd.R . sp.logiregs.R . spml.bsreg.R . supervised.pca.R . tc.plot.R . test.maker.R . testIndBeta.R . testIndBinom.R . testIndClogit.R . testIndFisher.R . testIndGEEGamma.R . testIndGEELogistic.R . testIndGEENormLog.R . testIndGEEPois.R . testIndGEEReg.R . testIndGLMMCR.R . testIndGLMMGamma.R . testIndGLMMLogistic.R . testIndGLMMNB.R . testIndGLMMNormLog.R . testIndGLMMOrdinal.R . testIndGLMMPois.R . testIndGLMMReg.R . testIndGamma.R . testIndIGreg.R . testIndLMM.R . testIndLogistic.R . testIndMMFisher.R . testIndMMReg.R . testIndMVreg.R . testIndMultinom.R . testIndNB.R . testIndNormLog.R . testIndOrdinal.R . testIndPois.R . testIndQBinom.R . testIndQPois.R . testIndRQ.R . testIndReg.R . testIndSPML.R . testIndSpearman.R . testIndTimeLogistic.R . testIndTimeMultinom.R . testIndTobit.R . testIndZIP.R . tobit.bsreg.R . tobit.fsreg.R . tobit.fsreg_2.R . topological_sort.R . transitiveClosure.R . triangles.search.R . undir.path.R . univariateScore.R . univariateScore.gee.R . univariateScore.glmm.R . univariateScore.ma.R . univariateScore.timeclass.R . univregs.R . wald.Internalmmpc.R . wald.Internalses.R . wald.betaregs.R . wald.logisticregs.R . wald.mmpc.R . wald.mmpc.path.R . wald.poissonregs.R . wald.ses.R . wald.univariateScore.R . wald.univregs.R . wald.zipregs.R . waldBeta.R . waldBinom.R . waldCR.R . waldER.R . waldGamma.R . waldIGreg.R . waldLLR.R . waldLogistic.R . waldMMreg.R . waldNB.R . waldNormLog.R . waldPois.R . waldQBinom.R . waldQPois.R . waldTobit.R . waldWR.R . waldZIP.R . waldmmpc.model.R . waldses.model.R . wr.fsreg.R . wr.fsreg_2.R . zinb.mle.R . zinb.mod.R . zinb.reg.R . zip.bsreg.R . zip.fsreg.R . zip.fsreg_2.R . zip.mod.R . zip.reg.R . zip.regs.R . zipmle.wei.R . zipwei.R . Full MXM package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by
helping add
Reviews / comments / questions /suggestions ↴↴↴
Today's Hot Picks in Authors and Packages
Rfast2
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Manos Papadakis (view profile)
tropAlgebra
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Muhammad Kashif Hanif (view profile)
elect
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Ardo van den Hout (view profile)
dmlalg
Implementation of double machine learning (DML) algorithms in R,
based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Corinne Emmenegger (view profile)
composits
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Sevvandi Kandanaarachchi (view profile)
LOGANTree
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Qi Qin (view profile)