Other packages > Find by keyword >

iai  

Interface to 'Interpretable AI' Modules
View on CRAN: Click here


Download and install iai package within the R console
Install from CRAN:
install.packages("iai")

Install from Github:
library("remotes")
install_github("cran/iai")

Install by package version:
library("remotes")
install_version("iai", "1.10.2")



Attach the package and use:
library("iai")
Maintained by
Jack Dunn
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2019-07-18
Latest Update: 2023-06-13
Description:
An interface to the algorithms of 'Interpretable AI' from the R programming language. 'Interpretable AI' provides various modules, including 'Optimal Trees' for classification, regression, prescription and survival analysis, 'Optimal Imputation' for missing data imputation and outlier detection, and 'Optimal Feature Selection' for exact sparse regression. The 'iai' package is an open-source project. The 'Interpretable AI' software modules are proprietary products, but free academic and evaluation licenses are available.
How to cite:
Jack Dunn (2019). iai: Interface to 'Interpretable AI' Modules. R package version 1.10.2, https://cran.r-project.org/web/packages/iai. Accessed 06 Jan. 2025.
Previous versions and publish date:
1.0.0 (2019-07-18 08:36), 1.1.0 (2019-09-13 06:40), 1.2.0 (2020-01-29 23:20), 1.3.0 (2020-08-05 21:50), 1.4.0 (2020-12-09 15:40), 1.5.0 (2021-02-03 15:20), 1.6.0 (2021-06-09 16:30), 1.7.0 (2021-12-06 15:00), 1.8.0 (2022-08-29 22:50), 1.9.0 (2023-04-04 20:00), 1.10.0 (2023-06-13 18:10), 1.10.1 (2024-06-18 06:00)
Other packages that cited iai R package
View iai citation profile
Other R packages that iai depends, imports, suggests or enhances
Complete documentation for iai
Functions, R codes and Examples using the iai R package
Some associated functions: acquire_license . add_julia_processes . all_treatment_combinations . apply . apply_nodes . as.mixeddata . autoplot.grid_search . autoplot.roc_curve . autoplot.similarity_comparison . autoplot.stability_analysis . categorical_classification_reward_estimator . categorical_regression_reward_estimator . categorical_reward_estimator . categorical_survival_reward_estimator . cleanup_installation . clone . convert_treatments_to_numeric . copy_splits_and_refit_leaves . decision_path . delete_rich_output_param . equal_propensity_estimator . fit.grid_search . fit.imputation_learner . fit.learner . fit . fit.optimal_feature_selection_learner . fit_and_expand . fit_cv . fit_predict.categorical_reward_estimator . fit_predict.numeric_reward_estimator . fit_predict . fit_transform . fit_transform_cv . get_best_params . get_classification_label.classification_tree_learner . get_classification_label.classification_tree_multi_learner . get_classification_label . get_classification_proba.classification_tree_learner . get_classification_proba.classification_tree_multi_learner . get_classification_proba . get_cluster_assignments . get_cluster_details . get_cluster_distances . get_depth . get_estimation_densities . get_features_used . get_grid_result_details . get_grid_result_summary . get_grid_results . get_learner . get_lower_child . get_machine_id . get_num_fits.glmnetcv_learner . get_num_fits . get_num_fits.optimal_feature_selection_learner . get_num_nodes . get_num_samples . get_params . get_parent . get_policy_treatment_outcome . get_policy_treatment_outcome_standard_error . get_policy_treatment_rank . get_prediction_constant.glmnetcv_learner . get_prediction_constant . get_prediction_constant.optimal_feature_selection_learner . get_prediction_weights.glmnetcv_learner . get_prediction_weights . get_prediction_weights.optimal_feature_selection_learner . get_prescription_treatment_rank . get_regression_constant.classification_tree_learner . get_regression_constant.classification_tree_multi_learner . get_regression_constant . get_regression_constant.prescription_tree_learner . get_regression_constant.regression_tree_learner . get_regression_constant.regression_tree_multi_learner . get_regression_constant.survival_tree_learner . get_regression_weights.classification_tree_learner . get_regression_weights.classification_tree_multi_learner . get_regression_weights . get_regression_weights.prescription_tree_learner . get_regression_weights.regression_tree_learner . get_regression_weights.regression_tree_multi_learner . get_regression_weights.survival_tree_learner . get_rich_output_params . get_roc_curve_data . get_split_categories . get_split_feature . get_split_threshold . get_split_weights . get_stability_results . get_survival_curve . get_survival_curve_data . get_survival_expected_time . get_survival_hazard . get_train_errors . get_tree . get_upper_child . glmnetcv_classifier . glmnetcv_regressor . glmnetcv_survival_learner . grid_search . iai_setup . imputation_learner . impute . impute_cv . install_julia . install_system_image . is_categoric_split . is_hyperplane_split . is_leaf . is_mixed_ordinal_split . is_mixed_parallel_split . is_ordinal_split . is_parallel_split . load_graphviz . mean_imputation_learner . missing_goes_lower . multi_questionnaire.default . multi_questionnaire.grid_search . multi_questionnaire . multi_tree_plot.default . multi_tree_plot.grid_search . multi_tree_plot . numeric_classification_reward_estimator . numeric_regression_reward_estimator . numeric_reward_estimator . numeric_survival_reward_estimator . opt_knn_imputation_learner . opt_svm_imputation_learner . opt_tree_imputation_learner . optimal_feature_selection_classifier . optimal_feature_selection_regressor . optimal_tree_classifier . optimal_tree_multi_classifier . optimal_tree_multi_regressor . optimal_tree_policy_maximizer . optimal_tree_policy_minimizer . optimal_tree_prescription_maximizer . optimal_tree_prescription_minimizer . optimal_tree_regressor . optimal_tree_survival_learner . optimal_tree_survivor . plot.grid_search . plot.roc_curve . plot.similarity_comparison . plot.stability_analysis . predict.categorical_reward_estimator . predict.glmnetcv_learner . predict.numeric_reward_estimator . predict . predict.optimal_feature_selection_learner . predict.supervised_learner . predict.supervised_multi_learner . predict.survival_learner . predict_expected_survival_time.glmnetcv_survival_learner . predict_expected_survival_time . predict_expected_survival_time.survival_curve . predict_expected_survival_time.survival_learner . predict_hazard.glmnetcv_survival_learner . predict_hazard . predict_hazard.survival_learner . predict_outcomes . predict_outcomes.policy_learner . predict_outcomes.prescription_learner . predict_proba.classification_learner . predict_proba.classification_multi_learner . predict_proba.glmnetcv_classifier . predict_proba . predict_reward.categorical_reward_estimator . predict_reward.numeric_reward_estimator . predict_reward . predict_shap . predict_treatment_outcome . predict_treatment_outcome_standard_error . predict_treatment_rank . print_path . prune_trees . questionnaire . questionnaire.optimal_feature_selection_learner . questionnaire.tree_learner . rand_imputation_learner . random_forest_classifier . random_forest_regressor . random_forest_survival_learner . read_json . refit_leaves . release_license . reset_display_label . resume_from_checkpoint . reward_estimator . roc_curve.classification_learner . roc_curve.classification_multi_learner . roc_curve.default . roc_curve.glmnetcv_classifier . roc_curve . score.categorical_reward_estimator . score.default . score.glmnetcv_learner . score.numeric_reward_estimator . score . score.optimal_feature_selection_learner . score.supervised_learner . score.supervised_multi_learner . set_display_label . set_julia_seed . set_params . set_reward_kernel_bandwidth . set_rich_output_param . set_threshold . show_in_browser.abstract_visualization . show_in_browser . show_in_browser.roc_curve . show_in_browser.tree_learner . show_questionnaire . show_questionnaire.optimal_feature_selection_learner . show_questionnaire.tree_learner . similarity_comparison . single_knn_imputation_learner . split_data . stability_analysis . transform . transform_and_expand . tree_plot . tune_reward_kernel_bandwidth . variable_importance.learner . variable_importance . variable_importance.optimal_feature_selection_learner . variable_importance.tree_learner . variable_importance_similarity . write_booster . write_dot . write_html.abstract_visualization . write_html . write_html.roc_curve . write_html.tree_learner . write_json . write_pdf . write_png . write_questionnaire . write_questionnaire.optimal_feature_selection_learner . write_questionnaire.tree_learner . write_svg . xgboost_classifier . xgboost_regressor . xgboost_survival_learner . zero_imputation_learner . 
Some associated R codes: generic.R . heuristics.R . iaibase.R . iaitrees.R . install.R . interface.R . interface_class.R . optimalfeatureselection.R . optimaltrees.R . optimpute.R . rewardestimation.R . utils.R .  Full iai package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

NetSwan  
Network Strengths and Weaknesses Analysis
A set of functions for studying network robustness, resilience and vulnerability. ...
Download / Learn more Package Citations See dependency  
mlr3fairness  
Fairness Auditing and Debiasing for 'mlr3'
Integrates fairness auditing and bias mitigation methods for the 'mlr3' ecosystem. This includes ...
Download / Learn more Package Citations See dependency  
RsqMed  
Total Mediation Effect Size Measure for High-Dimensional Mediators
An implementation of calculating the R-squared measure as a total mediation effect size measure and ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
ROI.plugin.deoptim  
'DEoptim' and 'DEoptimR' Plugin for the 'R' Optimization Interface
Enhances the R Optimization Infrastructure ('ROI') package with the 'DEoptim' and 'DEoptimR' packag ...
Download / Learn more Package Citations See dependency  
lmds  
Landmark Multi-Dimensional Scaling
A fast dimensionality reduction method scaleable to large numbers of samples. Landmark Multi-Dime ...
Download / Learn more Package Citations See dependency  

23,440

R Packages

202,297

Dependencies

63,567

Author Associations

23,434

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA