Other packages > Find by keyword >

iai  

Interface to 'Interpretable AI' Modules
View on CRAN: Click here


Download and install iai package within the R console
Install from CRAN:
install.packages("iai")

Install from Github:
library("remotes")
install_github("cran/iai")

Install by package version:
library("remotes")
install_version("iai", "1.10.2")



Attach the package and use:
library("iai")
Maintained by
Jack Dunn
[Scholar Profile | Author Map]
First Published: 2019-07-18
Latest Update: 2023-06-13
Description:
An interface to the algorithms of 'Interpretable AI' from the R programming language. 'Interpretable AI' provides various modules, including 'Optimal Trees' for classification, regression, prescription and survival analysis, 'Optimal Imputation' for missing data imputation and outlier detection, and 'Optimal Feature Selection' for exact sparse regression. The 'iai' package is an open-source project. The 'Interpretable AI' software modules are proprietary products, but free academic and evaluation licenses are available.
How to cite:
Jack Dunn (2019). iai: Interface to 'Interpretable AI' Modules. R package version 1.10.2, https://cran.r-project.org/web/packages/iai. Accessed 29 Mar. 2025.
Previous versions and publish date:
1.0.0 (2019-07-18 08:36), 1.1.0 (2019-09-13 06:40), 1.2.0 (2020-01-29 23:20), 1.3.0 (2020-08-05 21:50), 1.4.0 (2020-12-09 15:40), 1.5.0 (2021-02-03 15:20), 1.6.0 (2021-06-09 16:30), 1.7.0 (2021-12-06 15:00), 1.8.0 (2022-08-29 22:50), 1.9.0 (2023-04-04 20:00), 1.10.0 (2023-06-13 18:10), 1.10.1 (2024-06-18 06:00)
Other packages that cited iai R package
View iai citation profile
Other R packages that iai depends, imports, suggests or enhances
Complete documentation for iai
Functions, R codes and Examples using the iai R package
Some associated functions: acquire_license . add_julia_processes . all_treatment_combinations . apply . apply_nodes . as.mixeddata . autoplot.grid_search . autoplot.roc_curve . autoplot.similarity_comparison . autoplot.stability_analysis . categorical_classification_reward_estimator . categorical_regression_reward_estimator . categorical_reward_estimator . categorical_survival_reward_estimator . cleanup_installation . clone . convert_treatments_to_numeric . copy_splits_and_refit_leaves . decision_path . delete_rich_output_param . equal_propensity_estimator . fit.grid_search . fit.imputation_learner . fit.learner . fit . fit.optimal_feature_selection_learner . fit_and_expand . fit_cv . fit_predict.categorical_reward_estimator . fit_predict.numeric_reward_estimator . fit_predict . fit_transform . fit_transform_cv . get_best_params . get_classification_label.classification_tree_learner . get_classification_label.classification_tree_multi_learner . get_classification_label . get_classification_proba.classification_tree_learner . get_classification_proba.classification_tree_multi_learner . get_classification_proba . get_cluster_assignments . get_cluster_details . get_cluster_distances . get_depth . get_estimation_densities . get_features_used . get_grid_result_details . get_grid_result_summary . get_grid_results . get_learner . get_lower_child . get_machine_id . get_num_fits.glmnetcv_learner . get_num_fits . get_num_fits.optimal_feature_selection_learner . get_num_nodes . get_num_samples . get_params . get_parent . get_policy_treatment_outcome . get_policy_treatment_outcome_standard_error . get_policy_treatment_rank . get_prediction_constant.glmnetcv_learner . get_prediction_constant . get_prediction_constant.optimal_feature_selection_learner . get_prediction_weights.glmnetcv_learner . get_prediction_weights . get_prediction_weights.optimal_feature_selection_learner . get_prescription_treatment_rank . get_regression_constant.classification_tree_learner . get_regression_constant.classification_tree_multi_learner . get_regression_constant . get_regression_constant.prescription_tree_learner . get_regression_constant.regression_tree_learner . get_regression_constant.regression_tree_multi_learner . get_regression_constant.survival_tree_learner . get_regression_weights.classification_tree_learner . get_regression_weights.classification_tree_multi_learner . get_regression_weights . get_regression_weights.prescription_tree_learner . get_regression_weights.regression_tree_learner . get_regression_weights.regression_tree_multi_learner . get_regression_weights.survival_tree_learner . get_rich_output_params . get_roc_curve_data . get_split_categories . get_split_feature . get_split_threshold . get_split_weights . get_stability_results . get_survival_curve . get_survival_curve_data . get_survival_expected_time . get_survival_hazard . get_train_errors . get_tree . get_upper_child . glmnetcv_classifier . glmnetcv_regressor . glmnetcv_survival_learner . grid_search . iai_setup . imputation_learner . impute . impute_cv . install_julia . install_system_image . is_categoric_split . is_hyperplane_split . is_leaf . is_mixed_ordinal_split . is_mixed_parallel_split . is_ordinal_split . is_parallel_split . load_graphviz . mean_imputation_learner . missing_goes_lower . multi_questionnaire.default . multi_questionnaire.grid_search . multi_questionnaire . multi_tree_plot.default . multi_tree_plot.grid_search . multi_tree_plot . numeric_classification_reward_estimator . numeric_regression_reward_estimator . numeric_reward_estimator . numeric_survival_reward_estimator . opt_knn_imputation_learner . opt_svm_imputation_learner . opt_tree_imputation_learner . optimal_feature_selection_classifier . optimal_feature_selection_regressor . optimal_tree_classifier . optimal_tree_multi_classifier . optimal_tree_multi_regressor . optimal_tree_policy_maximizer . optimal_tree_policy_minimizer . optimal_tree_prescription_maximizer . optimal_tree_prescription_minimizer . optimal_tree_regressor . optimal_tree_survival_learner . optimal_tree_survivor . plot.grid_search . plot.roc_curve . plot.similarity_comparison . plot.stability_analysis . predict.categorical_reward_estimator . predict.glmnetcv_learner . predict.numeric_reward_estimator . predict . predict.optimal_feature_selection_learner . predict.supervised_learner . predict.supervised_multi_learner . predict.survival_learner . predict_expected_survival_time.glmnetcv_survival_learner . predict_expected_survival_time . predict_expected_survival_time.survival_curve . predict_expected_survival_time.survival_learner . predict_hazard.glmnetcv_survival_learner . predict_hazard . predict_hazard.survival_learner . predict_outcomes . predict_outcomes.policy_learner . predict_outcomes.prescription_learner . predict_proba.classification_learner . predict_proba.classification_multi_learner . predict_proba.glmnetcv_classifier . predict_proba . predict_reward.categorical_reward_estimator . predict_reward.numeric_reward_estimator . predict_reward . predict_shap . predict_treatment_outcome . predict_treatment_outcome_standard_error . predict_treatment_rank . print_path . prune_trees . questionnaire . questionnaire.optimal_feature_selection_learner . questionnaire.tree_learner . rand_imputation_learner . random_forest_classifier . random_forest_regressor . random_forest_survival_learner . read_json . refit_leaves . release_license . reset_display_label . resume_from_checkpoint . reward_estimator . roc_curve.classification_learner . roc_curve.classification_multi_learner . roc_curve.default . roc_curve.glmnetcv_classifier . roc_curve . score.categorical_reward_estimator . score.default . score.glmnetcv_learner . score.numeric_reward_estimator . score . score.optimal_feature_selection_learner . score.supervised_learner . score.supervised_multi_learner . set_display_label . set_julia_seed . set_params . set_reward_kernel_bandwidth . set_rich_output_param . set_threshold . show_in_browser.abstract_visualization . show_in_browser . show_in_browser.roc_curve . show_in_browser.tree_learner . show_questionnaire . show_questionnaire.optimal_feature_selection_learner . show_questionnaire.tree_learner . similarity_comparison . single_knn_imputation_learner . split_data . stability_analysis . transform . transform_and_expand . tree_plot . tune_reward_kernel_bandwidth . variable_importance.learner . variable_importance . variable_importance.optimal_feature_selection_learner . variable_importance.tree_learner . variable_importance_similarity . write_booster . write_dot . write_html.abstract_visualization . write_html . write_html.roc_curve . write_html.tree_learner . write_json . write_pdf . write_png . write_questionnaire . write_questionnaire.optimal_feature_selection_learner . write_questionnaire.tree_learner . write_svg . xgboost_classifier . xgboost_regressor . xgboost_survival_learner . zero_imputation_learner . 
Some associated R codes: generic.R . heuristics.R . iaibase.R . iaitrees.R . install.R . interface.R . interface_class.R . optimalfeatureselection.R . optimaltrees.R . optimpute.R . rewardestimation.R . utils.R .  Full iai package functions and examples
Downloads during the last 30 days
02/2702/2803/0103/0203/0303/0403/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/28Downloads for iai0510152025303540TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
gglgbtq  
Show Pride on 'ggplot2' Plots
Provides multiple palettes based on pride flags with tailored themes. ...
Download / Learn more Package Citations See dependency  
landmix  
Landmark Prediction for Mixture Data
Non-parametric prediction of survival outcomes for mixture data that incorporates covariates and a l ...
Download / Learn more Package Citations See dependency  

23,842

R Packages

207,311

Dependencies

64,420

Author Associations

23,781

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA