Other packages > Find by keyword >

iai  

Interface to 'Interpretable AI' Modules
View on CRAN: Click here


Download and install iai package within the R console
Install from CRAN:
install.packages("iai")

Install from Github:
library("remotes")
install_github("cran/iai")

Install by package version:
library("remotes")
install_version("iai", "1.10.2")



Attach the package and use:
library("iai")
Maintained by
Jack Dunn
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2019-07-18
Latest Update: 2023-06-13
Description:
An interface to the algorithms of 'Interpretable AI' from the R programming language. 'Interpretable AI' provides various modules, including 'Optimal Trees' for classification, regression, prescription and survival analysis, 'Optimal Imputation' for missing data imputation and outlier detection, and 'Optimal Feature Selection' for exact sparse regression. The 'iai' package is an open-source project. The 'Interpretable AI' software modules are proprietary products, but free academic and evaluation licenses are available.
How to cite:
Jack Dunn (2019). iai: Interface to 'Interpretable AI' Modules. R package version 1.10.2, https://cran.r-project.org/web/packages/iai. Accessed 07 Nov. 2024.
Previous versions and publish date:
1.0.0 (2019-07-18 08:36), 1.1.0 (2019-09-13 06:40), 1.2.0 (2020-01-29 23:20), 1.3.0 (2020-08-05 21:50), 1.4.0 (2020-12-09 15:40), 1.5.0 (2021-02-03 15:20), 1.6.0 (2021-06-09 16:30), 1.7.0 (2021-12-06 15:00), 1.8.0 (2022-08-29 22:50), 1.9.0 (2023-04-04 20:00), 1.10.0 (2023-06-13 18:10), 1.10.1 (2024-06-18 06:00)
Other packages that cited iai R package
View iai citation profile
Other R packages that iai depends, imports, suggests or enhances
Complete documentation for iai
Functions, R codes and Examples using the iai R package
Some associated functions: acquire_license . add_julia_processes . all_treatment_combinations . apply . apply_nodes . as.mixeddata . autoplot.grid_search . autoplot.roc_curve . autoplot.similarity_comparison . autoplot.stability_analysis . categorical_classification_reward_estimator . categorical_regression_reward_estimator . categorical_reward_estimator . categorical_survival_reward_estimator . cleanup_installation . clone . convert_treatments_to_numeric . copy_splits_and_refit_leaves . decision_path . delete_rich_output_param . equal_propensity_estimator . fit.grid_search . fit.imputation_learner . fit.learner . fit . fit.optimal_feature_selection_learner . fit_and_expand . fit_cv . fit_predict.categorical_reward_estimator . fit_predict.numeric_reward_estimator . fit_predict . fit_transform . fit_transform_cv . get_best_params . get_classification_label.classification_tree_learner . get_classification_label.classification_tree_multi_learner . get_classification_label . get_classification_proba.classification_tree_learner . get_classification_proba.classification_tree_multi_learner . get_classification_proba . get_cluster_assignments . get_cluster_details . get_cluster_distances . get_depth . get_estimation_densities . get_features_used . get_grid_result_details . get_grid_result_summary . get_grid_results . get_learner . get_lower_child . get_machine_id . get_num_fits.glmnetcv_learner . get_num_fits . get_num_fits.optimal_feature_selection_learner . get_num_nodes . get_num_samples . get_params . get_parent . get_policy_treatment_outcome . get_policy_treatment_outcome_standard_error . get_policy_treatment_rank . get_prediction_constant.glmnetcv_learner . get_prediction_constant . get_prediction_constant.optimal_feature_selection_learner . get_prediction_weights.glmnetcv_learner . get_prediction_weights . get_prediction_weights.optimal_feature_selection_learner . get_prescription_treatment_rank . get_regression_constant.classification_tree_learner . get_regression_constant.classification_tree_multi_learner . get_regression_constant . get_regression_constant.prescription_tree_learner . get_regression_constant.regression_tree_learner . get_regression_constant.regression_tree_multi_learner . get_regression_constant.survival_tree_learner . get_regression_weights.classification_tree_learner . get_regression_weights.classification_tree_multi_learner . get_regression_weights . get_regression_weights.prescription_tree_learner . get_regression_weights.regression_tree_learner . get_regression_weights.regression_tree_multi_learner . get_regression_weights.survival_tree_learner . get_rich_output_params . get_roc_curve_data . get_split_categories . get_split_feature . get_split_threshold . get_split_weights . get_stability_results . get_survival_curve . get_survival_curve_data . get_survival_expected_time . get_survival_hazard . get_train_errors . get_tree . get_upper_child . glmnetcv_classifier . glmnetcv_regressor . glmnetcv_survival_learner . grid_search . iai_setup . imputation_learner . impute . impute_cv . install_julia . install_system_image . is_categoric_split . is_hyperplane_split . is_leaf . is_mixed_ordinal_split . is_mixed_parallel_split . is_ordinal_split . is_parallel_split . load_graphviz . mean_imputation_learner . missing_goes_lower . multi_questionnaire.default . multi_questionnaire.grid_search . multi_questionnaire . multi_tree_plot.default . multi_tree_plot.grid_search . multi_tree_plot . numeric_classification_reward_estimator . numeric_regression_reward_estimator . numeric_reward_estimator . numeric_survival_reward_estimator . opt_knn_imputation_learner . opt_svm_imputation_learner . opt_tree_imputation_learner . optimal_feature_selection_classifier . optimal_feature_selection_regressor . optimal_tree_classifier . optimal_tree_multi_classifier . optimal_tree_multi_regressor . optimal_tree_policy_maximizer . optimal_tree_policy_minimizer . optimal_tree_prescription_maximizer . optimal_tree_prescription_minimizer . optimal_tree_regressor . optimal_tree_survival_learner . optimal_tree_survivor . plot.grid_search . plot.roc_curve . plot.similarity_comparison . plot.stability_analysis . predict.categorical_reward_estimator . predict.glmnetcv_learner . predict.numeric_reward_estimator . predict . predict.optimal_feature_selection_learner . predict.supervised_learner . predict.supervised_multi_learner . predict.survival_learner . predict_expected_survival_time.glmnetcv_survival_learner . predict_expected_survival_time . predict_expected_survival_time.survival_curve . predict_expected_survival_time.survival_learner . predict_hazard.glmnetcv_survival_learner . predict_hazard . predict_hazard.survival_learner . predict_outcomes . predict_outcomes.policy_learner . predict_outcomes.prescription_learner . predict_proba.classification_learner . predict_proba.classification_multi_learner . predict_proba.glmnetcv_classifier . predict_proba . predict_reward.categorical_reward_estimator . predict_reward.numeric_reward_estimator . predict_reward . predict_shap . predict_treatment_outcome . predict_treatment_outcome_standard_error . predict_treatment_rank . print_path . prune_trees . questionnaire . questionnaire.optimal_feature_selection_learner . questionnaire.tree_learner . rand_imputation_learner . random_forest_classifier . random_forest_regressor . random_forest_survival_learner . read_json . refit_leaves . release_license . reset_display_label . resume_from_checkpoint . reward_estimator . roc_curve.classification_learner . roc_curve.classification_multi_learner . roc_curve.default . roc_curve.glmnetcv_classifier . roc_curve . score.categorical_reward_estimator . score.default . score.glmnetcv_learner . score.numeric_reward_estimator . score . score.optimal_feature_selection_learner . score.supervised_learner . score.supervised_multi_learner . set_display_label . set_julia_seed . set_params . set_reward_kernel_bandwidth . set_rich_output_param . set_threshold . show_in_browser.abstract_visualization . show_in_browser . show_in_browser.roc_curve . show_in_browser.tree_learner . show_questionnaire . show_questionnaire.optimal_feature_selection_learner . show_questionnaire.tree_learner . similarity_comparison . single_knn_imputation_learner . split_data . stability_analysis . transform . transform_and_expand . tree_plot . tune_reward_kernel_bandwidth . variable_importance.learner . variable_importance . variable_importance.optimal_feature_selection_learner . variable_importance.tree_learner . variable_importance_similarity . write_booster . write_dot . write_html.abstract_visualization . write_html . write_html.roc_curve . write_html.tree_learner . write_json . write_pdf . write_png . write_questionnaire . write_questionnaire.optimal_feature_selection_learner . write_questionnaire.tree_learner . write_svg . xgboost_classifier . xgboost_regressor . xgboost_survival_learner . zero_imputation_learner . 
Some associated R codes: generic.R . heuristics.R . iaibase.R . iaitrees.R . install.R . interface.R . interface_class.R . optimalfeatureselection.R . optimaltrees.R . optimpute.R . rewardestimation.R . utils.R .  Full iai package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

bacondecomp  
Goodman-Bacon Decomposition
Decomposition for differences-in-differences with variation in treatment timing from Goodman-Bacon ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
con2aqi  
Calculate the AQI from Pollutant Concentration
To calculate the AQI (Air Quality Index) from pollutant concentration data. O3, PM2.5, PM10, CO, SO ...
Download / Learn more Package Citations See dependency  
robregcc  
Robust Regression with Compositional Covariates
We implement the algorithm estimating the parameters of the robust regression model with composition ...
Download / Learn more Package Citations See dependency  

23,092

R Packages

198,677

Dependencies

62,675

Author Associations

23,089

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA