R package citation, R package reverse dependencies, R package scholars, install an r package from GitHub hy is package acceptance pending why is package undeliverable amazon why is package on hold dhl tour packages why in r package r and r package full form why is r free why r is bad which r package to install which r package has which r package which r package version which r package readxl which r package ggplot which r package fread which r package license where is package.json where is package-lock.json where is package.swift where is package explorer in eclipse where is package where is package manager unity where is package installer android where is package manager console in visual studio who r package which r package to install which r package version who is package who is package deal who is package design r and r package full form r and r package meaning what r package has what package r what is package in java what is package what is package-lock.json what is package in python what is package.json what is package installer do r package can't install r packages r can't find package r can't load package can't load xlsx package r can't install psych package r can't install sf package r Write if else in NONMEM pk pd
glmnet
View on CRAN: Click
here
Download and install glmnet package within the R console
Install from CRAN:
install.packages("glmnet")
Install from Github:
library("remotes")
install_github("cran/glmnet")
Install by package version:
library("remotes")
install_version("glmnet", "4.1-8")
Attach the package and use:
library("glmnet")
Maintained by
Trevor Hastie
[Scholar Profile | Author Map]
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2008-06-02
Latest Update: 2023-08-22
Description:
Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression, Cox model, multiple-response Gaussian, and the grouped multinomial regression; see and . There are two new and important additions. The family argument can be a GLM family object, which opens the door to any programmed family (). This comes with a modest computational cost, so when the built-in families suffice, they should be used instead. The other novelty is the relax option, which refits each of the active sets in the path unpenalized. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the papers cited.
How to cite:
Trevor Hastie (2008). glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. R package version 4.1-8, https://cran.r-project.org/web/packages/glmnet. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.1-1 (2008-06-27 08:35), 1.1-2 (2008-12-23 09:02), 1.1-3 (2009-01-24 11:12), 1.1-4 (2009-12-18 17:36), 1.1-5 (2010-01-31 11:11), 1.1 (2008-06-02 09:00), 1.2 (2010-04-04 17:43), 1.3 (2010-04-25 09:26), 1.4 (2010-06-16 17:35), 1.5.1 (2010-11-19 08:33), 1.5.2 (2011-02-07 10:50), 1.5.3 (2011-03-01 01:04), 1.5 (2010-11-04 21:16), 1.6 (2011-04-24 08:08), 1.7.1 (2011-09-23 13:45), 1.7.3 (2012-02-19 10:12), 1.7.4 (2012-04-27 08:02), 1.7 (2011-06-15 20:50), 1.8-2 (2012-10-02 08:20), 1.8-4 (2012-12-27 23:11), 1.8-5 (2013-01-04 09:21), 1.8 (2012-07-03 19:50), 1.9-1 (2013-02-10 20:17), 1.9-3 (2013-03-02 08:14), 1.9-5 (2013-08-04 02:09), 1.9-8 (2014-05-24 22:49), 2.0-1 (2015-04-08 11:12), 2.0-2 (2015-04-12 00:56), 2.0-3 (2016-02-23 07:18), 2.0-4 (2016-03-13 11:29), 2.0-5 (2016-03-17 14:00), 2.0-8 (2017-04-30 09:02), 2.0-9 (2017-05-02 22:39), 2.0-10 (2017-05-06 08:23), 2.0-12 (2017-09-13 19:35), 2.0-13 (2017-09-22 07:43), 2.0-16 (2018-04-02 14:06), 2.0-18 (2019-05-20 07:10), 3.0-1 (2019-11-15 07:50), 3.0-2 (2019-12-11 18:00), 3.0 (2019-11-09 11:20), 4.0-2 (2020-06-16 02:00), 4.0 (2020-05-14 19:30), 4.1-1 (2021-02-21 18:40), 4.1-2 (2021-06-24 08:30), 4.1-3 (2021-11-02 19:50), 4.1-4 (2022-04-15 11:22), 4.1-6 (2022-11-27 23:10), 4.1-7 (2023-03-23 02:40), 4.1 (2021-01-11 09:00)
Other packages that cited glmnet R package
View glmnet citation profile
Other R packages that glmnet depends,
imports, suggests or enhances
Complete documentation for glmnet
Functions, R codes and Examples using
the glmnet R package
Some associated functions: BinomialExample . Cindex . CoxExample . MultiGaussianExample . MultinomialExample . PoissonExample . QuickStartExample . SparseExample . assess.glmnet . beta_CVX . bigGlm . cox.fit . cox.path . cox_obj_function . coxgrad . coxnet.deviance . cv.glmnet . dev_function . deviance.glmnet . elnet.fit . fid . get_cox_lambda_max . get_eta . get_start . glmnet-internal . glmnet-package . glmnet.control . glmnet.fit . glmnet.measures . glmnet . glmnet.path . makeX . mycoxph . mycoxpred . na.replace . obj_function . pen_function . plot.cv.glmnet . plot.glmnet . predict.cv.glmnet . predict.glmnet . predict.glmnetfit . print.cv.glmnet . print.glmnet . response.coxnet . rmult . stratifySurv . survfit.coxnet . survfit.cv.glmnet . use.cox.path . weighted_mean_sd .
Some associated R codes: Cindex.R . RcppExports.R . assess.coxnet.R . assess.glmnet.R . auc.R . auc.mat.R . bigGlm.R . blend.relaxed.R . buildPredmat.array.R . buildPredmat.coxnetlist.R . buildPredmat.default.R . check.dots.R . check.exclude.R . coef.cv.glmnet.R . coef.cv.relaxed.R . coef.glmnet.R . coef.relaxed.R . coefnorm.R . confusion.glmnet.R . coxgrad.R . coxnet.R . coxnet.deviance.R . coxpath.R . cv.coxnet.R . cv.elnet.R . cv.fishnet.R . cv.glmnet.R . cv.glmnet.raw.R . cv.glmnetfit.R . cv.lognet.R . cv.mrelnet.R . cv.multnet.R . cv.relaxed.raw.R . cvcompute.R . cvstats.R . cvtype.R . data.R . deviance.glmnet.R . elnet.R . error.bars.R . family.glmnet.R . fishnet.R . fix.lam.R . getOptcv.glmnet.R . getOptcv.relaxed.R . getcoef.R . getcoef.multinomial.R . glmnet-package.R . glmnet.R . glmnet.control.R . glmnet.measures.R . glmnetFlex.R . glmnet_softmax.R . jerr.R . jerr.coxnet.R . jerr.elnet.R . jerr.fishnet.R . jerr.lognet.R . jerr.mrelnet.R . lambda.interp.R . lognet.R . makeX.R . mrelnet.R . na.mean.R . nonzeroCoef.R . onAttach.R . pb.R . plot.cv.glmnet.R . plot.cv.relaxed.R . plot.glmnet.R . plot.mrelnet.R . plot.multnet.R . plot.relaxed.R . plotCoef.R . predict.coxnet.R . predict.cv.glmnet.R . predict.cv.relaxed.R . predict.elnet.R . predict.fishnet.R . predict.glmnet.R . predict.lognet.R . predict.mrelnet.R . predict.multnet.R . predict.relaxed.R . print.bigGlm.R . print.confusion.table.R . print.cv.glmnet.R . print.cv.relaxed.R . print.glmnet.R . relax.glmnet.R . response.coxnet.R . rmult.R . roc.glmnet.R . stratifySurv.R . survfit.coxnet.R . survfit.cv.glmnet.R . zeromat.R . Full glmnet package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by
helping add
Reviews / comments / questions /suggestions ↴↴↴
Today's Hot Picks in Authors and Packages
LOGANTree
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Qi Qin (view profile)
elect
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Ardo van den Hout (view profile)
Rfast2
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Manos Papadakis (view profile)
quickcode
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Obinna Obianom (view profile)
wordspace
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Stephanie Evert (view profile)
composits
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Sevvandi Kandanaarachchi (view profile)