Other packages > Find by keyword >

glmnet  

Lasso and Elastic-Net Regularized Generalized Linear Models
View on CRAN: Click here


Download and install glmnet package within the R console
Install from CRAN:
install.packages("glmnet")

Install from Github:
library("remotes")
install_github("cran/glmnet")

Install by package version:
library("remotes")
install_version("glmnet", "4.1-8")



Attach the package and use:
library("glmnet")
Maintained by
Trevor Hastie
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2008-06-02
Latest Update: 2023-08-22
Description:
Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression, Cox model, multiple-response Gaussian, and the grouped multinomial regression; see and . There are two new and important additions. The family argument can be a GLM family object, which opens the door to any programmed family (). This comes with a modest computational cost, so when the built-in families suffice, they should be used instead. The other novelty is the relax option, which refits each of the active sets in the path unpenalized. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the papers cited.
How to cite:
Trevor Hastie (2008). glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. R package version 4.1-8, https://cran.r-project.org/web/packages/glmnet. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.1-1 (2008-06-27 08:35), 1.1-2 (2008-12-23 09:02), 1.1-3 (2009-01-24 11:12), 1.1-4 (2009-12-18 17:36), 1.1-5 (2010-01-31 11:11), 1.1 (2008-06-02 09:00), 1.2 (2010-04-04 17:43), 1.3 (2010-04-25 09:26), 1.4 (2010-06-16 17:35), 1.5.1 (2010-11-19 08:33), 1.5.2 (2011-02-07 10:50), 1.5.3 (2011-03-01 01:04), 1.5 (2010-11-04 21:16), 1.6 (2011-04-24 08:08), 1.7.1 (2011-09-23 13:45), 1.7.3 (2012-02-19 10:12), 1.7.4 (2012-04-27 08:02), 1.7 (2011-06-15 20:50), 1.8-2 (2012-10-02 08:20), 1.8-4 (2012-12-27 23:11), 1.8-5 (2013-01-04 09:21), 1.8 (2012-07-03 19:50), 1.9-1 (2013-02-10 20:17), 1.9-3 (2013-03-02 08:14), 1.9-5 (2013-08-04 02:09), 1.9-8 (2014-05-24 22:49), 2.0-1 (2015-04-08 11:12), 2.0-2 (2015-04-12 00:56), 2.0-3 (2016-02-23 07:18), 2.0-4 (2016-03-13 11:29), 2.0-5 (2016-03-17 14:00), 2.0-8 (2017-04-30 09:02), 2.0-9 (2017-05-02 22:39), 2.0-10 (2017-05-06 08:23), 2.0-12 (2017-09-13 19:35), 2.0-13 (2017-09-22 07:43), 2.0-16 (2018-04-02 14:06), 2.0-18 (2019-05-20 07:10), 3.0-1 (2019-11-15 07:50), 3.0-2 (2019-12-11 18:00), 3.0 (2019-11-09 11:20), 4.0-2 (2020-06-16 02:00), 4.0 (2020-05-14 19:30), 4.1-1 (2021-02-21 18:40), 4.1-2 (2021-06-24 08:30), 4.1-3 (2021-11-02 19:50), 4.1-4 (2022-04-15 11:22), 4.1-6 (2022-11-27 23:10), 4.1-7 (2023-03-23 02:40), 4.1 (2021-01-11 09:00)
Other packages that cited glmnet R package
View glmnet citation profile
Other R packages that glmnet depends, imports, suggests or enhances
Complete documentation for glmnet
Functions, R codes and Examples using the glmnet R package
Some associated functions: BinomialExample . Cindex . CoxExample . MultiGaussianExample . MultinomialExample . PoissonExample . QuickStartExample . SparseExample . assess.glmnet . beta_CVX . bigGlm . cox.fit . cox.path . cox_obj_function . coxgrad . coxnet.deviance . cv.glmnet . dev_function . deviance.glmnet . elnet.fit . fid . get_cox_lambda_max . get_eta . get_start . glmnet-internal . glmnet-package . glmnet.control . glmnet.fit . glmnet.measures . glmnet . glmnet.path . makeX . mycoxph . mycoxpred . na.replace . obj_function . pen_function . plot.cv.glmnet . plot.glmnet . predict.cv.glmnet . predict.glmnet . predict.glmnetfit . print.cv.glmnet . print.glmnet . response.coxnet . rmult . stratifySurv . survfit.coxnet . survfit.cv.glmnet . use.cox.path . weighted_mean_sd . 
Some associated R codes: Cindex.R . RcppExports.R . assess.coxnet.R . assess.glmnet.R . auc.R . auc.mat.R . bigGlm.R . blend.relaxed.R . buildPredmat.array.R . buildPredmat.coxnetlist.R . buildPredmat.default.R . check.dots.R . check.exclude.R . coef.cv.glmnet.R . coef.cv.relaxed.R . coef.glmnet.R . coef.relaxed.R . coefnorm.R . confusion.glmnet.R . coxgrad.R . coxnet.R . coxnet.deviance.R . coxpath.R . cv.coxnet.R . cv.elnet.R . cv.fishnet.R . cv.glmnet.R . cv.glmnet.raw.R . cv.glmnetfit.R . cv.lognet.R . cv.mrelnet.R . cv.multnet.R . cv.relaxed.raw.R . cvcompute.R . cvstats.R . cvtype.R . data.R . deviance.glmnet.R . elnet.R . error.bars.R . family.glmnet.R . fishnet.R . fix.lam.R . getOptcv.glmnet.R . getOptcv.relaxed.R . getcoef.R . getcoef.multinomial.R . glmnet-package.R . glmnet.R . glmnet.control.R . glmnet.measures.R . glmnetFlex.R . glmnet_softmax.R . jerr.R . jerr.coxnet.R . jerr.elnet.R . jerr.fishnet.R . jerr.lognet.R . jerr.mrelnet.R . lambda.interp.R . lognet.R . makeX.R . mrelnet.R . na.mean.R . nonzeroCoef.R . onAttach.R . pb.R . plot.cv.glmnet.R . plot.cv.relaxed.R . plot.glmnet.R . plot.mrelnet.R . plot.multnet.R . plot.relaxed.R . plotCoef.R . predict.coxnet.R . predict.cv.glmnet.R . predict.cv.relaxed.R . predict.elnet.R . predict.fishnet.R . predict.glmnet.R . predict.lognet.R . predict.mrelnet.R . predict.multnet.R . predict.relaxed.R . print.bigGlm.R . print.confusion.table.R . print.cv.glmnet.R . print.cv.relaxed.R . print.glmnet.R . relax.glmnet.R . response.coxnet.R . rmult.R . roc.glmnet.R . stratifySurv.R . survfit.coxnet.R . survfit.cv.glmnet.R . zeromat.R .  Full glmnet package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA