Other packages > Find by keyword >

geodl  

Geospatial Semantic Segmentation with Torch and Terra
View on CRAN: Click here


Download and install geodl package within the R console
Install from CRAN:
install.packages("geodl")

Install from Github:
library("remotes")
install_github("cran/geodl")

Install by package version:
library("remotes")
install_version("geodl", "0.2.0")



Attach the package and use:
library("geodl")
Maintained by
Aaron Maxwell
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2024-08-20
Latest Update: 2024-08-20
Description:
Provides tools for semantic segmentation of geospatial data using convolutional neural network-based deep learning. Utility functions allow for creating masks, image chips, data frames listing image chips in a directory, and DataSets for use within DataLoaders. Additional functions are provided to serve as checks during the data preparation and training process. A UNet architecture can be defined with 4 blocks in the encoder, a bottleneck block, and 4 blocks in the decoder. The UNet can accept a variable number of input channels, and the user can define the number of feature maps produced in each encoder and decoder block and the bottleneck. Users can also choose to (1) replace all rectified linear unit (ReLU) activation functions with leaky ReLU or swish, (2) implement attention gates along the skip connections, (3) implement squeeze and excitation modules within the encoder blocks, (4) add residual connections within all blocks, (5) replace the bottleneck with a modified atrous spatial pyramid pooling (ASPP) module, and/or (6) implement deep supervision using predictions generated at each stage in the decoder. A unified focal loss framework is implemented after Yeung et al. (2022) <doi:10.1016/j.compmedimag.2021.102026>. We have also implemented assessment metrics using the 'luz' package including F1-score, recall, and precision. Trained models can be used to predict to spatial data without the need to generate chips from larger spatial extents. Functions are available for performing accuracy assessment. The package relies on 'torch' for implementing deep learning, which does not require the installation of a 'Python' environment. Raster geospatial data are handled with 'terra'. Models can be trained using a Compute Unified Device Architecture (CUDA)-enabled graphics processing unit (GPU); however, multi-GPU training is not supported by 'torch' in 'R'.
How to cite:
Aaron Maxwell (2024). geodl: Geospatial Semantic Segmentation with Torch and Terra. R package version 0.2.0, https://cran.r-project.org/web/packages/geodl. Accessed 22 Dec. 2024.
Previous versions and publish date:
No previous versions
Other packages that cited geodl R package
View geodl citation profile
Other R packages that geodl depends, imports, suggests or enhances
Complete documentation for geodl
Functions, R codes and Examples using the geodl R package
Full geodl package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA