Other packages > Find by keyword >

SimInf  

A Framework for Data-Driven Stochastic Disease Spread Simulations
View on CRAN: Click here


Download and install SimInf package within the R console
Install from CRAN:
install.packages("SimInf")

Install from Github:
library("remotes")
install_github("cran/SimInf")

Install by package version:
library("remotes")
install_version("SimInf", "9.8.1")



Attach the package and use:
library("SimInf")
Maintained by
Stefan Widgren
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2016-01-08
Latest Update: 2023-12-20
Description:
Provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and 'OpenMP' (if available) to divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goals was to make the package extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. The package contains template models and can be extended with user-defined models. For more details see the paper by Widgren, Bauer, Eriksson and Engblom (2019) <doi:10.18637/jss.v091.i12>. The package also provides functionality to fit models to time series data using the Approximate Bayesian Computation Sequential Monte Carlo ('ABC-SMC') algorithm of Toni and others (2009) <doi:10.1098/rsif.2008.0172>.
How to cite:
Stefan Widgren (2016). SimInf: A Framework for Data-Driven Stochastic Disease Spread Simulations. R package version 9.8.1, https://cran.r-project.org/web/packages/SimInf. Accessed 07 Nov. 2024.
Previous versions and publish date:
1.0.0 (2016-01-08 18:36), 2.0.0 (2016-05-04 07:56), 3.0.0 (2017-01-29 18:59), 4.0.0 (2017-03-21 07:50), 5.0.0 (2017-06-13 16:41), 5.1.0 (2017-10-18 13:02), 6.0.0 (2018-04-21 00:44), 6.1.0 (2018-08-13 14:10), 6.2.0 (2018-11-20 10:30), 6.3.0 (2019-05-26 17:10), 6.4.0 (2019-11-12 00:50), 6.5.0 (2020-03-29 15:00), 6.5.1 (2020-04-01 19:50), 7.0.0 (2020-05-23 18:40), 7.0.1 (2020-06-18 19:20), 8.0.0 (2020-09-13 10:10), 8.1.0 (2020-10-18 12:30), 8.2.0 (2020-12-06 16:40), 8.3.0 (2021-06-25 13:30), 8.3.2 (2021-06-30 10:00), 8.4.0 (2021-09-19 16:40), 9.0.0 (2022-04-20 10:42), 9.1.0 (2022-06-08 09:00), 9.2.0 (2022-09-03 19:40), 9.3.1 (2022-10-07 09:10), 9.4.0 (2023-01-06 12:10), 9.5.0 (2023-01-23 09:50), 9.6.0 (2023-12-20 14:50), 9.7.0 (2024-04-23 22:50)
Other packages that cited SimInf R package
View SimInf citation profile
Other R packages that SimInf depends, imports, suggests or enhances
Complete documentation for SimInf
Functions, R codes and Examples using the SimInf R package
Some associated functions: C_code . SEIR-class . SEIR . SIR-class . SIR . SIS-class . SIS . SISe-class . SISe . SISe3-class . SISe3 . SISe3_sp-class . SISe3_sp . SISe_sp-class . SISe_sp . SimInf . SimInf_abc-class . SimInf_events-class . SimInf_events . SimInf_model-class . SimInf_model . SimInf_pfilter-class . abc . as.data.frame.SimInf_abc . as.data.frame.SimInf_events . boxplot-SimInf_model-method . continue . distance_matrix . events . events_SEIR . events_SIR . events_SIS . events_SISe . events_SISe3 . gdata-set . gdata . indegree . ldata . logLik-SimInf_pfilter-method . mparse . n_generations . n_nodes . nodes . outdegree . package_skeleton . pairs-SimInf_model-method . pfilter . plot-SimInf_abc-method . plot-SimInf_events-method . plot-SimInf_pfilter-method . plot . prevalence-SimInf_model-method . prevalence . punchcard-set . run . select_matrix-set . select_matrix . set_num_threads . shift_matrix-set . shift_matrix . show-SimInf_abc-method . show-SimInf_events-method . show-SimInf_model-method . show-SimInf_pfilter-method . summary-SimInf_abc-method . summary-SimInf_events-method . summary-SimInf_model-method . summary-SimInf_pfilter-method . trajectory-SimInf_model-method . trajectory-SimInf_pfilter-method . trajectory . u0-set . u0 . u0_SEIR . u0_SIR . u0_SIS . u0_SISe . u0_SISe3 . v0-set . 
Some associated R codes: C-generator.R . SEIR.R . SIR.R . SIS.R . SISe.R . SISe3.R . SISe3_sp.R . SISe_sp.R . SimInf.R . SimInf_events.R . SimInf_model.R . abc.R . check_arguments.R . classes.R . degree.R . density_ratio.R . distance.R . distributions.R . init.R . match_compartments.R . mparse.R . n.R . openmp.R . package_skeleton.R . pfilter.R . plot.R . prevalence.R . print.R . punchcard.R . run.R . trajectory.R . u0.R . v0.R . valid.R .  Full SimInf package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

bacondecomp  
Goodman-Bacon Decomposition
Decomposition for differences-in-differences with variation in treatment timing from Goodman-Bacon ...
Download / Learn more Package Citations See dependency  
con2aqi  
Calculate the AQI from Pollutant Concentration
To calculate the AQI (Air Quality Index) from pollutant concentration data. O3, PM2.5, PM10, CO, SO ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
robregcc  
Robust Regression with Compositional Covariates
We implement the algorithm estimating the parameters of the robust regression model with composition ...
Download / Learn more Package Citations See dependency  

23,092

R Packages

198,677

Dependencies

62,675

Author Associations

23,089

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA