Other packages > Find by keyword >

NU.Learning  

Nonparametric and Unsupervised Learning from Cross-Sectional Observational Data
View on CRAN: Click here


Download and install NU.Learning package within the R console
Install from CRAN:
install.packages("NU.Learning")

Install from Github:
library("remotes")
install_github("cran/NU.Learning")

Install by package version:
library("remotes")
install_version("NU.Learning", "1.5")



Attach the package and use:
library("NU.Learning")
Maintained by
Bob Obenchain
[Scholar Profile | Author Map]
First Published: 2023-09-30
Latest Update: 2023-09-30
Description:
Especially when cross-sectional data are observational, effects of treatment selection bias and confounding are best revealed by using Nonparametric and Unsupervised methods to "Design" the analysis of the given data ...rather than the collection of "designed data". Specifically, the "effect-size distribution" that best quantifies a potentially causal relationship between a numeric y-Outcome variable and either a binary t-Treatment or continuous e-Exposure variable needs to consist of BLOCKS of relatively well-matched experimental units (e.g. patients) that have the most similar X-confounder characteristics. Since our NU Learning approach will form BLOCKS by "clustering" experimental units in confounder X-space, the implicit statistical model for learning is One-Way ANOVA. Within Block measures of effect-size are then either [a] LOCAL Treatment Differences (LTDs) between Within-Cluster y-Outcome Means ("new" minus "control") when treatment choice is Binary or else [b] LOCAL Rank Correlations (LRCs) when the e-Exposure variable is numeric with (hopefully many) more than two levels. An Instrumental Variable (IV) method is also provided so that Local Average y-Outcomes (LAOs) within BLOCKS may also contribute information for effect-size inferences when X-Covariates are assumed to influence Treatment choice or Exposure level but otherwise have no direct effects on y-Outcomes. Finally, a "Most-Like-Me" function provides histograms of effect-size distributions to aid Doctor-Patient (or Researcher-Society) communications about Heterogeneous Outcomes. Obenchain and Young (2013) ; Obenchain, Young and Krstic (2019) .
How to cite:
Bob Obenchain (2023). NU.Learning: Nonparametric and Unsupervised Learning from Cross-Sectional Observational Data. R package version 1.5, https://cran.r-project.org/web/packages/NU.Learning. Accessed 04 Apr. 2025.
Previous versions and publish date:
No previous versions
Other packages that cited NU.Learning R package
View NU.Learning citation profile
Other R packages that NU.Learning depends, imports, suggests or enhances
Complete documentation for NU.Learning
Functions, R codes and Examples using the NU.Learning R package
Full NU.Learning package functions and examples
Downloads during the last 30 days
03/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/02Downloads for NU.Learning0123456789101112TrendBars

Today's Hot Picks in Authors and Packages

PakPMICS2014HH  
Multiple Indicator Cluster Survey (MICS) 2014 Household Questionnaire Data for Punjab, Pakistan
Provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2014 Hous ...
Download / Learn more Package Citations See dependency  
Rexperigen  
R Interface to Experigen
Provides convenience functions to communicate with an Experigen server: Experigen ( ...
Download / Learn more Package Citations See dependency  
metaprotr  
Metaproteomics Post-Processing Analysis
Set of tools for descriptive analysis of metaproteomics data generated from high-throughput mass ...
Download / Learn more Package Citations See dependency  
RMixpanel  
API for Mixpanel
Provides an interface to many endpoints of Mixpanel's Data Export, Engage and JQL API. The R functio ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
perryExamples  
Examples for Integrating Prediction Error Estimation into Regression Models
Examples for integrating package 'perry' for prediction error estimation into regression models. ...
Download / Learn more Package Citations See dependency  

23,990

R Packages

207,311

Dependencies

64,809

Author Associations

23,991

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA