Other packages > Find by keyword >

MachineShop  

Machine Learning Models and Tools
View on CRAN: Click here


Download and install MachineShop package within the R console
Install from CRAN:
install.packages("MachineShop")

Install from Github:
library("remotes")
install_github("cran/MachineShop")

Install by package version:
library("remotes")
install_version("MachineShop", "3.8.0")



Attach the package and use:
library("MachineShop")
Maintained by
Brian J Smith
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-10-14
Latest Update: 2023-09-18
Description:
Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.
How to cite:
Brian J Smith (2018). MachineShop: Machine Learning Models and Tools. R package version 3.8.0, https://cran.r-project.org/web/packages/MachineShop. Accessed 21 Nov. 2024.
Previous versions and publish date:
0.1-1 (2018-10-14 17:30), 0.2.0 (2018-11-19 17:30), 0.3.0 (2018-11-23 12:20), 0.4.0 (2018-12-13 00:20), 1.0.0 (2019-01-02 15:30), 1.1.0 (2019-01-23 15:10), 1.2.0 (2019-02-15 17:20), 1.3.0 (2019-04-23 16:00), 1.4.0 (2019-06-08 06:20), 1.5.0 (2019-08-01 19:30), 1.6.0 (2019-10-11 00:30), 2.0.0 (2019-12-10 23:40), 2.1.0 (2020-02-09 00:50), 2.2.0 (2020-03-18 16:40), 2.3.0 (2020-05-14 01:40), 2.4.0 (2020-06-05 00:40), 2.5.0 (2020-08-06 01:10), 2.6.0 (2021-01-19 20:20), 2.6.1 (2021-01-26 18:40), 2.7.0 (2021-03-02 20:10), 2.8.0 (2021-04-16 18:50), 2.9.0 (2021-06-18 10:20), 3.0.0 (2021-08-19 22:20), 3.1.0 (2021-10-01 16:00), 3.2.0 (2021-12-06 16:10), 3.3.0 (2022-02-09 14:20), 3.4.0 (2022-03-16 13:30), 3.5.0 (2022-06-03 10:40), 3.6.0 (2022-09-05 17:20), 3.6.1 (2023-02-01 19:40), 3.6.2 (2023-03-21 14:00), 3.7.0 (2023-09-18 16:00)
Other packages that cited MachineShop R package
View MachineShop citation profile
Other R packages that MachineShop depends, imports, suggests or enhances
Complete documentation for MachineShop
Functions, R codes and Examples using the MachineShop R package
Some associated functions: AdaBagModel . AdaBoostModel . BARTMachineModel . BARTModel . BlackBoostModel . C50Model . CForestModel . CoxModel . DiscreteVariate . EarthModel . FDAModel . GAMBoostModel . GBMModel . GLMBoostModel . GLMModel . GLMNetModel . ICHomes . KNNModel . LARSModel . LDAModel . LMModel . MDAModel . MLControl . MLMetric . MLModel . MachineShop-package . ModelFrame-methods . ModelSpecification-methods . NNetModel . NaiveBayesModel . PLSModel . POLRModel . ParameterGrid . ParsnipModel . QDAModel . RFSRCModel . RPartModel . RandomForestModel . RangerModel . SVMModel . SelectedInput . SelectedModel . StackedModel . SuperModel . SurvMatrix . SurvRegModel . TreeModel . TunedInput . TunedModel . TuningGrid . XGBModel . as.MLInput . as.MLModel . as.data.frame . calibration . case_weights . combine-methods . confusion . dependence . diff-methods . expand_model . expand_modelgrid-methods . expand_params . expand_steps . extract-methods . fit-methods . inputs . lift . metricinfo . metrics . modelinfo . models . performance . performance_curve . plot-methods . predict . print-methods . quote . recipe_roles . reexports . resample-methods . response-methods . rfe-methods . set_monitor-methods . set_optim-methods . set_predict . set_strata . settings . step_kmeans . step_kmedoids . step_lincomp . step_sbf . step_spca . summary-methods . t.test . unMLModelFit . varimp . 
Some associated R codes: MLControl.R . MLInput.R . MLMetric.R . MLModel.R . MLOptimization.R . ML_AdaBagModel.R . ML_AdaBoostModel.R . ML_BARTMachineModel.R . ML_BARTModel.R . ML_BlackBoostModel.R . ML_C50Model.R . ML_CForestModel.R . ML_CoxModel.R . ML_EarthModel.R . ML_FDAModel.R . ML_GAMBoostModel.R . ML_GBMModel.R . ML_GLMBoostModel.R . ML_GLMModel.R . ML_GLMNetModel.R . ML_KNNModel.R . ML_LARSModel.R . ML_LDAModel.R . ML_LMModel.R . ML_MDAModel.R . ML_NNetModel.R . ML_NaiveBayesModel.R . ML_PLSModel.R . ML_POLRModel.R . ML_ParsnipModel.R . ML_QDAModel.R . ML_RFSRCModel.R . ML_RPartModel.R . ML_RandomForestModel.R . ML_RangerModel.R . ML_SVMModel.R . ML_StackedModel.R . ML_SuperModel.R . ML_SurvRegModel.R . ML_TreeModel.R . ML_XGBModel.R . MachineShop-package.R . ModelFrame.R . ModelRecipe.R . ModelSpecification.R . TrainedInputs.R . TrainedModels.R . TrainingParams.R . append.R . calibration.R . case_comps.R . classes.R . coerce.R . combine.R . conditions.R . confusion.R . convert.R . data.R . dependence.R . diff.R . expand.R . extract.R . fit.R . grid.R . metricinfo.R . metrics.R . metrics_factor.R . metrics_numeric.R . modelinfo.R . models.R . performance.R . performance_curve.R . plot.R . predict.R . print.R . recipe_roles.R . reexports.R . resample.R . response.R . rfe.R . settings.R . step_kmeans.R . step_kmedoids.R . step_lincomp.R . step_sbf.R . step_spca.R . summary.R . survival.R . utils.R . varimp.R .  Full MachineShop package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

kgschart  
KGS Rank Graph Parser
Restore underlining numeric data from rating history graph of KGS (an online platform of the game o ...
Download / Learn more Package Citations See dependency  
SCBiclust  
Identifies Mean, Variance, and Hierarchically Clustered Biclusters
Identifies a bicluster, a submatrix of the data such that the features and observations within the s ...
Download / Learn more Package Citations See dependency  
RcppHNSW  
'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest Neighbors
'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This package provides a minimal R int ...
Download / Learn more Package Citations See dependency  
deductive  
Data Correction and Imputation Using Deductive Methods
Attempt to repair inconsistencies and missing values in data records by using information from vali ...
Download / Learn more Package Citations See dependency  
pkgdepends  
Package Dependency Resolution and Downloads
Find recursive dependencies of 'R' packages from various sources. Solve the dependencies to obtain ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  

23,229

R Packages

199,929

Dependencies

62,984

Author Associations

23,230

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA