Other packages > Find by keyword >

MachineShop  

Machine Learning Models and Tools
View on CRAN: Click here


Download and install MachineShop package within the R console
Install from CRAN:
install.packages("MachineShop")

Install from Github:
library("remotes")
install_github("cran/MachineShop")

Install by package version:
library("remotes")
install_version("MachineShop", "3.8.0")



Attach the package and use:
library("MachineShop")
Maintained by
Brian J Smith
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-10-14
Latest Update: 2023-09-18
Description:
Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.
How to cite:
Brian J Smith (2018). MachineShop: Machine Learning Models and Tools. R package version 3.8.0, https://cran.r-project.org/web/packages/MachineShop. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.1-1 (2018-10-14 17:30), 0.2.0 (2018-11-19 17:30), 0.3.0 (2018-11-23 12:20), 0.4.0 (2018-12-13 00:20), 1.0.0 (2019-01-02 15:30), 1.1.0 (2019-01-23 15:10), 1.2.0 (2019-02-15 17:20), 1.3.0 (2019-04-23 16:00), 1.4.0 (2019-06-08 06:20), 1.5.0 (2019-08-01 19:30), 1.6.0 (2019-10-11 00:30), 2.0.0 (2019-12-10 23:40), 2.1.0 (2020-02-09 00:50), 2.2.0 (2020-03-18 16:40), 2.3.0 (2020-05-14 01:40), 2.4.0 (2020-06-05 00:40), 2.5.0 (2020-08-06 01:10), 2.6.0 (2021-01-19 20:20), 2.6.1 (2021-01-26 18:40), 2.7.0 (2021-03-02 20:10), 2.8.0 (2021-04-16 18:50), 2.9.0 (2021-06-18 10:20), 3.0.0 (2021-08-19 22:20), 3.1.0 (2021-10-01 16:00), 3.2.0 (2021-12-06 16:10), 3.3.0 (2022-02-09 14:20), 3.4.0 (2022-03-16 13:30), 3.5.0 (2022-06-03 10:40), 3.6.0 (2022-09-05 17:20), 3.6.1 (2023-02-01 19:40), 3.6.2 (2023-03-21 14:00), 3.7.0 (2023-09-18 16:00)
Other packages that cited MachineShop R package
View MachineShop citation profile
Other R packages that MachineShop depends, imports, suggests or enhances
Complete documentation for MachineShop
Functions, R codes and Examples using the MachineShop R package
Some associated functions: AdaBagModel . AdaBoostModel . BARTMachineModel . BARTModel . BlackBoostModel . C50Model . CForestModel . CoxModel . DiscreteVariate . EarthModel . FDAModel . GAMBoostModel . GBMModel . GLMBoostModel . GLMModel . GLMNetModel . ICHomes . KNNModel . LARSModel . LDAModel . LMModel . MDAModel . MLControl . MLMetric . MLModel . MachineShop-package . ModelFrame-methods . ModelSpecification-methods . NNetModel . NaiveBayesModel . PLSModel . POLRModel . ParameterGrid . ParsnipModel . QDAModel . RFSRCModel . RPartModel . RandomForestModel . RangerModel . SVMModel . SelectedInput . SelectedModel . StackedModel . SuperModel . SurvMatrix . SurvRegModel . TreeModel . TunedInput . TunedModel . TuningGrid . XGBModel . as.MLInput . as.MLModel . as.data.frame . calibration . case_weights . combine-methods . confusion . dependence . diff-methods . expand_model . expand_modelgrid-methods . expand_params . expand_steps . extract-methods . fit-methods . inputs . lift . metricinfo . metrics . modelinfo . models . performance . performance_curve . plot-methods . predict . print-methods . quote . recipe_roles . reexports . resample-methods . response-methods . rfe-methods . set_monitor-methods . set_optim-methods . set_predict . set_strata . settings . step_kmeans . step_kmedoids . step_lincomp . step_sbf . step_spca . summary-methods . t.test . unMLModelFit . varimp . 
Some associated R codes: MLControl.R . MLInput.R . MLMetric.R . MLModel.R . MLOptimization.R . ML_AdaBagModel.R . ML_AdaBoostModel.R . ML_BARTMachineModel.R . ML_BARTModel.R . ML_BlackBoostModel.R . ML_C50Model.R . ML_CForestModel.R . ML_CoxModel.R . ML_EarthModel.R . ML_FDAModel.R . ML_GAMBoostModel.R . ML_GBMModel.R . ML_GLMBoostModel.R . ML_GLMModel.R . ML_GLMNetModel.R . ML_KNNModel.R . ML_LARSModel.R . ML_LDAModel.R . ML_LMModel.R . ML_MDAModel.R . ML_NNetModel.R . ML_NaiveBayesModel.R . ML_PLSModel.R . ML_POLRModel.R . ML_ParsnipModel.R . ML_QDAModel.R . ML_RFSRCModel.R . ML_RPartModel.R . ML_RandomForestModel.R . ML_RangerModel.R . ML_SVMModel.R . ML_StackedModel.R . ML_SuperModel.R . ML_SurvRegModel.R . ML_TreeModel.R . ML_XGBModel.R . MachineShop-package.R . ModelFrame.R . ModelRecipe.R . ModelSpecification.R . TrainedInputs.R . TrainedModels.R . TrainingParams.R . append.R . calibration.R . case_comps.R . classes.R . coerce.R . combine.R . conditions.R . confusion.R . convert.R . data.R . dependence.R . diff.R . expand.R . extract.R . fit.R . grid.R . metricinfo.R . metrics.R . metrics_factor.R . metrics_numeric.R . modelinfo.R . models.R . performance.R . performance_curve.R . plot.R . predict.R . print.R . recipe_roles.R . reexports.R . resample.R . response.R . rfe.R . settings.R . step_kmeans.R . step_kmedoids.R . step_lincomp.R . step_sbf.R . step_spca.R . summary.R . survival.R . utils.R . varimp.R .  Full MachineShop package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA