R package citation, R package reverse dependencies, R package scholars, install an r package from GitHub hy is package acceptance pending why is package undeliverable amazon why is package on hold dhl tour packages why in r package r and r package full form why is r free why r is bad which r package to install which r package has which r package which r package version which r package readxl which r package ggplot which r package fread which r package license where is package.json where is package-lock.json where is package.swift where is package explorer in eclipse where is package where is package manager unity where is package installer android where is package manager console in visual studio who r package which r package to install which r package version who is package who is package deal who is package design r and r package full form r and r package meaning what r package has what package r what is package in java what is package what is package-lock.json what is package in python what is package.json what is package installer do r package can't install r packages r can't find package r can't load package can't load xlsx package r can't install psych package r can't install sf package r Write if else in NONMEM pk pd
MachineShop
View on CRAN: Click
here
Download and install MachineShop package within the R console
Install from CRAN:
install.packages("MachineShop")
Install from Github:
library("remotes")
install_github("cran/MachineShop")
Install by package version:
library("remotes")
install_version("MachineShop", "3.8.0")
Attach the package and use:
library("MachineShop")
Maintained by
Brian J Smith
[Scholar Profile | Author Map]
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-10-14
Latest Update: 2023-09-18
Description:
Meta-package for statistical and machine learning with a unified
interface for model fitting, prediction, performance assessment, and
presentation of results. Approaches for model fitting and prediction of
numerical, categorical, or censored time-to-event outcomes include
traditional regression models, regularization methods, tree-based methods,
support vector machines, neural networks, ensembles, data preprocessing,
filtering, and model tuning and selection. Performance metrics are provided
for model assessment and can be estimated with independent test sets, split
sampling, cross-validation, or bootstrap resampling. Resample estimation
can be executed in parallel for faster processing and nested in cases of
model tuning and selection. Modeling results can be summarized with
descriptive statistics; calibration curves; variable importance; partial
dependence plots; confusion matrices; and ROC, lift, and other performance
curves.
How to cite:
Brian J Smith (2018). MachineShop: Machine Learning Models and Tools. R package version 3.8.0, https://cran.r-project.org/web/packages/MachineShop. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.1-1 (2018-10-14 17:30), 0.2.0 (2018-11-19 17:30), 0.3.0 (2018-11-23 12:20), 0.4.0 (2018-12-13 00:20), 1.0.0 (2019-01-02 15:30), 1.1.0 (2019-01-23 15:10), 1.2.0 (2019-02-15 17:20), 1.3.0 (2019-04-23 16:00), 1.4.0 (2019-06-08 06:20), 1.5.0 (2019-08-01 19:30), 1.6.0 (2019-10-11 00:30), 2.0.0 (2019-12-10 23:40), 2.1.0 (2020-02-09 00:50), 2.2.0 (2020-03-18 16:40), 2.3.0 (2020-05-14 01:40), 2.4.0 (2020-06-05 00:40), 2.5.0 (2020-08-06 01:10), 2.6.0 (2021-01-19 20:20), 2.6.1 (2021-01-26 18:40), 2.7.0 (2021-03-02 20:10), 2.8.0 (2021-04-16 18:50), 2.9.0 (2021-06-18 10:20), 3.0.0 (2021-08-19 22:20), 3.1.0 (2021-10-01 16:00), 3.2.0 (2021-12-06 16:10), 3.3.0 (2022-02-09 14:20), 3.4.0 (2022-03-16 13:30), 3.5.0 (2022-06-03 10:40), 3.6.0 (2022-09-05 17:20), 3.6.1 (2023-02-01 19:40), 3.6.2 (2023-03-21 14:00), 3.7.0 (2023-09-18 16:00)
Other packages that cited MachineShop R package
View MachineShop citation profile
Other R packages that MachineShop depends,
imports, suggests or enhances
Complete documentation for MachineShop
Functions, R codes and Examples using
the MachineShop R package
Some associated functions: AdaBagModel . AdaBoostModel . BARTMachineModel . BARTModel . BlackBoostModel . C50Model . CForestModel . CoxModel . DiscreteVariate . EarthModel . FDAModel . GAMBoostModel . GBMModel . GLMBoostModel . GLMModel . GLMNetModel . ICHomes . KNNModel . LARSModel . LDAModel . LMModel . MDAModel . MLControl . MLMetric . MLModel . MachineShop-package . ModelFrame-methods . ModelSpecification-methods . NNetModel . NaiveBayesModel . PLSModel . POLRModel . ParameterGrid . ParsnipModel . QDAModel . RFSRCModel . RPartModel . RandomForestModel . RangerModel . SVMModel . SelectedInput . SelectedModel . StackedModel . SuperModel . SurvMatrix . SurvRegModel . TreeModel . TunedInput . TunedModel . TuningGrid . XGBModel . as.MLInput . as.MLModel . as.data.frame . calibration . case_weights . combine-methods . confusion . dependence . diff-methods . expand_model . expand_modelgrid-methods . expand_params . expand_steps . extract-methods . fit-methods . inputs . lift . metricinfo . metrics . modelinfo . models . performance . performance_curve . plot-methods . predict . print-methods . quote . recipe_roles . reexports . resample-methods . response-methods . rfe-methods . set_monitor-methods . set_optim-methods . set_predict . set_strata . settings . step_kmeans . step_kmedoids . step_lincomp . step_sbf . step_spca . summary-methods . t.test . unMLModelFit . varimp .
Some associated R codes: MLControl.R . MLInput.R . MLMetric.R . MLModel.R . MLOptimization.R . ML_AdaBagModel.R . ML_AdaBoostModel.R . ML_BARTMachineModel.R . ML_BARTModel.R . ML_BlackBoostModel.R . ML_C50Model.R . ML_CForestModel.R . ML_CoxModel.R . ML_EarthModel.R . ML_FDAModel.R . ML_GAMBoostModel.R . ML_GBMModel.R . ML_GLMBoostModel.R . ML_GLMModel.R . ML_GLMNetModel.R . ML_KNNModel.R . ML_LARSModel.R . ML_LDAModel.R . ML_LMModel.R . ML_MDAModel.R . ML_NNetModel.R . ML_NaiveBayesModel.R . ML_PLSModel.R . ML_POLRModel.R . ML_ParsnipModel.R . ML_QDAModel.R . ML_RFSRCModel.R . ML_RPartModel.R . ML_RandomForestModel.R . ML_RangerModel.R . ML_SVMModel.R . ML_StackedModel.R . ML_SuperModel.R . ML_SurvRegModel.R . ML_TreeModel.R . ML_XGBModel.R . MachineShop-package.R . ModelFrame.R . ModelRecipe.R . ModelSpecification.R . TrainedInputs.R . TrainedModels.R . TrainingParams.R . append.R . calibration.R . case_comps.R . classes.R . coerce.R . combine.R . conditions.R . confusion.R . convert.R . data.R . dependence.R . diff.R . expand.R . extract.R . fit.R . grid.R . metricinfo.R . metrics.R . metrics_factor.R . metrics_numeric.R . modelinfo.R . models.R . performance.R . performance_curve.R . plot.R . predict.R . print.R . recipe_roles.R . reexports.R . resample.R . response.R . rfe.R . settings.R . step_kmeans.R . step_kmedoids.R . step_lincomp.R . step_sbf.R . step_spca.R . summary.R . survival.R . utils.R . varimp.R . Full MachineShop package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by
helping add
Reviews / comments / questions /suggestions ↴↴↴
Today's Hot Picks in Authors and Packages
dmlalg
Implementation of double machine learning (DML) algorithms in R,
based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Corinne Emmenegger (view profile)
composits
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Sevvandi Kandanaarachchi (view profile)
Rfast2
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Manos Papadakis (view profile)
LOGANTree
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Qi Qin (view profile)
quickcode
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Obinna Obianom (view profile)
elect
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Ardo van den Hout (view profile)