Other packages > Find by keyword >

MachineShop  

Machine Learning Models and Tools
View on CRAN: Click here


Download and install MachineShop package within the R console
Install from CRAN:
install.packages("MachineShop")

Install from Github:
library("remotes")
install_github("cran/MachineShop")

Install by package version:
library("remotes")
install_version("MachineShop", "3.8.0")



Attach the package and use:
library("MachineShop")
Maintained by
Brian J Smith
[Scholar Profile | Author Map]
First Published: 2018-10-14
Latest Update: 2023-09-18
Description:
Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.
How to cite:
Brian J Smith (2018). MachineShop: Machine Learning Models and Tools. R package version 3.8.0, https://cran.r-project.org/web/packages/MachineShop. Accessed 05 May. 2025.
Previous versions and publish date:
0.1-1 (2018-10-14 17:30), 0.2.0 (2018-11-19 17:30), 0.3.0 (2018-11-23 12:20), 0.4.0 (2018-12-13 00:20), 1.0.0 (2019-01-02 15:30), 1.1.0 (2019-01-23 15:10), 1.2.0 (2019-02-15 17:20), 1.3.0 (2019-04-23 16:00), 1.4.0 (2019-06-08 06:20), 1.5.0 (2019-08-01 19:30), 1.6.0 (2019-10-11 00:30), 2.0.0 (2019-12-10 23:40), 2.1.0 (2020-02-09 00:50), 2.2.0 (2020-03-18 16:40), 2.3.0 (2020-05-14 01:40), 2.4.0 (2020-06-05 00:40), 2.5.0 (2020-08-06 01:10), 2.6.0 (2021-01-19 20:20), 2.6.1 (2021-01-26 18:40), 2.7.0 (2021-03-02 20:10), 2.8.0 (2021-04-16 18:50), 2.9.0 (2021-06-18 10:20), 3.0.0 (2021-08-19 22:20), 3.1.0 (2021-10-01 16:00), 3.2.0 (2021-12-06 16:10), 3.3.0 (2022-02-09 14:20), 3.4.0 (2022-03-16 13:30), 3.5.0 (2022-06-03 10:40), 3.6.0 (2022-09-05 17:20), 3.6.1 (2023-02-01 19:40), 3.6.2 (2023-03-21 14:00), 3.7.0 (2023-09-18 16:00)
Other packages that cited MachineShop R package
View MachineShop citation profile
Other R packages that MachineShop depends, imports, suggests or enhances
Complete documentation for MachineShop
Functions, R codes and Examples using the MachineShop R package
Some associated functions: AdaBagModel . AdaBoostModel . BARTMachineModel . BARTModel . BlackBoostModel . C50Model . CForestModel . CoxModel . DiscreteVariate . EarthModel . FDAModel . GAMBoostModel . GBMModel . GLMBoostModel . GLMModel . GLMNetModel . ICHomes . KNNModel . LARSModel . LDAModel . LMModel . MDAModel . MLControl . MLMetric . MLModel . MachineShop-package . ModelFrame-methods . ModelSpecification-methods . NNetModel . NaiveBayesModel . PLSModel . POLRModel . ParameterGrid . ParsnipModel . QDAModel . RFSRCModel . RPartModel . RandomForestModel . RangerModel . SVMModel . SelectedInput . SelectedModel . StackedModel . SuperModel . SurvMatrix . SurvRegModel . TreeModel . TunedInput . TunedModel . TuningGrid . XGBModel . as.MLInput . as.MLModel . as.data.frame . calibration . case_weights . combine-methods . confusion . dependence . diff-methods . expand_model . expand_modelgrid-methods . expand_params . expand_steps . extract-methods . fit-methods . inputs . lift . metricinfo . metrics . modelinfo . models . performance . performance_curve . plot-methods . predict . print-methods . quote . recipe_roles . reexports . resample-methods . response-methods . rfe-methods . set_monitor-methods . set_optim-methods . set_predict . set_strata . settings . step_kmeans . step_kmedoids . step_lincomp . step_sbf . step_spca . summary-methods . t.test . unMLModelFit . varimp . 
Some associated R codes: MLControl.R . MLInput.R . MLMetric.R . MLModel.R . MLOptimization.R . ML_AdaBagModel.R . ML_AdaBoostModel.R . ML_BARTMachineModel.R . ML_BARTModel.R . ML_BlackBoostModel.R . ML_C50Model.R . ML_CForestModel.R . ML_CoxModel.R . ML_EarthModel.R . ML_FDAModel.R . ML_GAMBoostModel.R . ML_GBMModel.R . ML_GLMBoostModel.R . ML_GLMModel.R . ML_GLMNetModel.R . ML_KNNModel.R . ML_LARSModel.R . ML_LDAModel.R . ML_LMModel.R . ML_MDAModel.R . ML_NNetModel.R . ML_NaiveBayesModel.R . ML_PLSModel.R . ML_POLRModel.R . ML_ParsnipModel.R . ML_QDAModel.R . ML_RFSRCModel.R . ML_RPartModel.R . ML_RandomForestModel.R . ML_RangerModel.R . ML_SVMModel.R . ML_StackedModel.R . ML_SuperModel.R . ML_SurvRegModel.R . ML_TreeModel.R . ML_XGBModel.R . MachineShop-package.R . ModelFrame.R . ModelRecipe.R . ModelSpecification.R . TrainedInputs.R . TrainedModels.R . TrainingParams.R . append.R . calibration.R . case_comps.R . classes.R . coerce.R . combine.R . conditions.R . confusion.R . convert.R . data.R . dependence.R . diff.R . expand.R . extract.R . fit.R . grid.R . metricinfo.R . metrics.R . metrics_factor.R . metrics_numeric.R . modelinfo.R . models.R . performance.R . performance_curve.R . plot.R . predict.R . print.R . recipe_roles.R . reexports.R . resample.R . response.R . rfe.R . settings.R . step_kmeans.R . step_kmedoids.R . step_lincomp.R . step_sbf.R . step_spca.R . summary.R . survival.R . utils.R . varimp.R .  Full MachineShop package functions and examples
Downloads during the last 30 days
04/0504/0604/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/1804/1904/2004/2104/2204/2304/2404/2504/2604/2704/2804/2904/3005/0105/0205/0305/04Downloads for MachineShop0102030405060708090100TrendBars

Today's Hot Picks in Authors and Packages

aspline  
Spline Regression with Adaptive Knot Selection
Perform one-dimensional spline regression with automatic knot selection. This package uses a penali ...
Download / Learn more Package Citations See dependency  
affinitymatrix  
Estimation of Affinity Matrix
Tools to study sorting patterns in matching markets and to estimate the affinity matrix of both the ...
Download / Learn more Package Citations See dependency  
ClickHouseHTTP  
A Simple HTTP Database Interface to 'ClickHouse'
'ClickHouse' () is an open-source, high performance columnar OLAP (online ...
Download / Learn more Package Citations See dependency  
helloJavaWorld  
Hello Java World
A dummy package to demonstrate how to interface to a jar file that resides inside an R package. ...
Download / Learn more Package Citations See dependency  
frailtypack  
Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints
The following several classes of frailty models using a penalized likelihood estimation on the hazar ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

24,205

R Packages

207,311

Dependencies

65,312

Author Associations

24,206

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA