Other packages > Find by keyword >

MachineShop  

Machine Learning Models and Tools
View on CRAN: Click here


Download and install MachineShop package within the R console
Install from CRAN:
install.packages("MachineShop")

Install from Github:
library("remotes")
install_github("cran/MachineShop")

Install by package version:
library("remotes")
install_version("MachineShop", "3.8.0")



Attach the package and use:
library("MachineShop")
Maintained by
Brian J Smith
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-10-14
Latest Update: 2023-09-18
Description:
Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.
How to cite:
Brian J Smith (2018). MachineShop: Machine Learning Models and Tools. R package version 3.8.0, https://cran.r-project.org/web/packages/MachineShop. Accessed 18 Feb. 2025.
Previous versions and publish date:
0.1-1 (2018-10-14 17:30), 0.2.0 (2018-11-19 17:30), 0.3.0 (2018-11-23 12:20), 0.4.0 (2018-12-13 00:20), 1.0.0 (2019-01-02 15:30), 1.1.0 (2019-01-23 15:10), 1.2.0 (2019-02-15 17:20), 1.3.0 (2019-04-23 16:00), 1.4.0 (2019-06-08 06:20), 1.5.0 (2019-08-01 19:30), 1.6.0 (2019-10-11 00:30), 2.0.0 (2019-12-10 23:40), 2.1.0 (2020-02-09 00:50), 2.2.0 (2020-03-18 16:40), 2.3.0 (2020-05-14 01:40), 2.4.0 (2020-06-05 00:40), 2.5.0 (2020-08-06 01:10), 2.6.0 (2021-01-19 20:20), 2.6.1 (2021-01-26 18:40), 2.7.0 (2021-03-02 20:10), 2.8.0 (2021-04-16 18:50), 2.9.0 (2021-06-18 10:20), 3.0.0 (2021-08-19 22:20), 3.1.0 (2021-10-01 16:00), 3.2.0 (2021-12-06 16:10), 3.3.0 (2022-02-09 14:20), 3.4.0 (2022-03-16 13:30), 3.5.0 (2022-06-03 10:40), 3.6.0 (2022-09-05 17:20), 3.6.1 (2023-02-01 19:40), 3.6.2 (2023-03-21 14:00), 3.7.0 (2023-09-18 16:00)
Other packages that cited MachineShop R package
View MachineShop citation profile
Other R packages that MachineShop depends, imports, suggests or enhances
Complete documentation for MachineShop
Functions, R codes and Examples using the MachineShop R package
Some associated functions: AdaBagModel . AdaBoostModel . BARTMachineModel . BARTModel . BlackBoostModel . C50Model . CForestModel . CoxModel . DiscreteVariate . EarthModel . FDAModel . GAMBoostModel . GBMModel . GLMBoostModel . GLMModel . GLMNetModel . ICHomes . KNNModel . LARSModel . LDAModel . LMModel . MDAModel . MLControl . MLMetric . MLModel . MachineShop-package . ModelFrame-methods . ModelSpecification-methods . NNetModel . NaiveBayesModel . PLSModel . POLRModel . ParameterGrid . ParsnipModel . QDAModel . RFSRCModel . RPartModel . RandomForestModel . RangerModel . SVMModel . SelectedInput . SelectedModel . StackedModel . SuperModel . SurvMatrix . SurvRegModel . TreeModel . TunedInput . TunedModel . TuningGrid . XGBModel . as.MLInput . as.MLModel . as.data.frame . calibration . case_weights . combine-methods . confusion . dependence . diff-methods . expand_model . expand_modelgrid-methods . expand_params . expand_steps . extract-methods . fit-methods . inputs . lift . metricinfo . metrics . modelinfo . models . performance . performance_curve . plot-methods . predict . print-methods . quote . recipe_roles . reexports . resample-methods . response-methods . rfe-methods . set_monitor-methods . set_optim-methods . set_predict . set_strata . settings . step_kmeans . step_kmedoids . step_lincomp . step_sbf . step_spca . summary-methods . t.test . unMLModelFit . varimp . 
Some associated R codes: MLControl.R . MLInput.R . MLMetric.R . MLModel.R . MLOptimization.R . ML_AdaBagModel.R . ML_AdaBoostModel.R . ML_BARTMachineModel.R . ML_BARTModel.R . ML_BlackBoostModel.R . ML_C50Model.R . ML_CForestModel.R . ML_CoxModel.R . ML_EarthModel.R . ML_FDAModel.R . ML_GAMBoostModel.R . ML_GBMModel.R . ML_GLMBoostModel.R . ML_GLMModel.R . ML_GLMNetModel.R . ML_KNNModel.R . ML_LARSModel.R . ML_LDAModel.R . ML_LMModel.R . ML_MDAModel.R . ML_NNetModel.R . ML_NaiveBayesModel.R . ML_PLSModel.R . ML_POLRModel.R . ML_ParsnipModel.R . ML_QDAModel.R . ML_RFSRCModel.R . ML_RPartModel.R . ML_RandomForestModel.R . ML_RangerModel.R . ML_SVMModel.R . ML_StackedModel.R . ML_SuperModel.R . ML_SurvRegModel.R . ML_TreeModel.R . ML_XGBModel.R . MachineShop-package.R . ModelFrame.R . ModelRecipe.R . ModelSpecification.R . TrainedInputs.R . TrainedModels.R . TrainingParams.R . append.R . calibration.R . case_comps.R . classes.R . coerce.R . combine.R . conditions.R . confusion.R . convert.R . data.R . dependence.R . diff.R . expand.R . extract.R . fit.R . grid.R . metricinfo.R . metrics.R . metrics_factor.R . metrics_numeric.R . modelinfo.R . models.R . performance.R . performance_curve.R . plot.R . predict.R . print.R . recipe_roles.R . reexports.R . resample.R . response.R . rfe.R . settings.R . step_kmeans.R . step_kmedoids.R . step_lincomp.R . step_sbf.R . step_spca.R . summary.R . survival.R . utils.R . varimp.R .  Full MachineShop package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

readxlsb  
Read 'Excel' Binary (.xlsb) Workbooks
Import data from 'Excel' binary (.xlsb) workbooks into R. ...
Download / Learn more Package Citations See dependency  
fclust  
Fuzzy Clustering
Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visuali ...
Download / Learn more Package Citations See dependency  
clustMixType  
k-Prototypes Clustering for Mixed Variable-Type Data
Functions to perform k-prototypes partitioning clustering for mixed variable-type data according to ...
Download / Learn more Package Citations See dependency  
MOSS  
Multi-Omic Integration via Sparse Singular Value Decomposition
High dimensionality, noise and heterogeneity among samples and features challenge the omic integrat ...
Download / Learn more Package Citations See dependency  
ppmf  
Read Census Privacy Protected Microdata Files
Implements data processing described in to align modern differentially ...
Download / Learn more Package Citations See dependency  
RobustBayesianCopas  
Robust Bayesian Copas Selection Model
Fits the robust Bayesian Copas (RBC) selection model of Bai et al. (2020) for cor ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA