Other packages > Find by keyword >

D2MCS  

Data Driving Multiple Classifier System
View on CRAN: Click here


Download and install D2MCS package within the R console
Install from CRAN:
install.packages("D2MCS")

Install from Github:
library("remotes")
install_github("cran/D2MCS")

Install by package version:
library("remotes")
install_version("D2MCS", "1.0.1")



Attach the package and use:
library("D2MCS")
Maintained by
Miguel Ferreiro-Díaz
[Scholar Profile | Author Map]
First Published: 2021-05-07
Latest Update: 2022-08-23
Description:
Provides a novel framework to able to automatically develop and deploy an accurate Multiple Classifier System based on the feature-clustering distribution achieved from an input dataset. 'D2MCS' was developed focused on four main aspects: (i) the ability to determine an effective method to evaluate the independence of features, (ii) the identification of the optimal number of feature clusters, (iii) the training and tuning of ML models and (iv) the execution of voting schemes to combine the outputs of each classifier comprising the Multiple Classifier System.
How to cite:
Miguel Ferreiro-Díaz (2021). D2MCS: Data Driving Multiple Classifier System. R package version 1.0.1, https://cran.r-project.org/web/packages/D2MCS. Accessed 29 Mar. 2025.
Previous versions and publish date:
1.0.0 (2021-05-07 11:30)
Other packages that cited D2MCS R package
View D2MCS citation profile
Other R packages that D2MCS depends, imports, suggests or enhances
Complete documentation for D2MCS
Functions, R codes and Examples using the D2MCS R package
Some associated functions: Accuracy . BinaryPlot . ChiSquareHeuristic . ClassMajorityVoting . ClassWeightedVoting . ClassificationOutput . ClusterPredictions . CombinedMetrics . CombinedVoting . ConfMatrix . D2MCS . DIterator . Dataset . DatasetLoader . DefaultModelFit . DependencyBasedStrategy . DependencyBasedStrategyConfiguration . ExecutedModels . FIterator . FN . FP . FinalPred . FisherTestHeuristic . GainRatioHeuristic . GenericClusteringStrategy . GenericHeuristic . GenericModelFit . GenericPlot . HDDataset . HDSubset . InformationGainHeuristic . Kappa . KendallHeuristic . MCC . MCCHeuristic . MeasureFunction . Methodology . MinimizeFN . MinimizeFP . Model . MultinformationHeuristic . NPV . NoProbability . OddsRatioHeuristic . PPV . PearsonHeuristic . Precision . Prediction . PredictionOutput . ProbAverageVoting . ProbAverageWeightedVoting . ProbBasedMethodology . Recall . Sensitivity . SimpleStrategy . SimpleVoting . SingleVoting . SpearmanHeuristic . Specificity . StrategyConfiguration . Subset . SummaryFunction . TN . TP . TrainFunction . TrainOutput . Trainset . TwoClass . TypeBasedStrategy . UseProbability . VotingStrategy . 
Some associated R codes: D2MCS.R . clustering.heuristics.ChiSquareHeuristic.R . clustering.heuristics.FisherTestHeuristic.R . clustering.heuristics.GainRatioHeuristic.R . clustering.heuristics.GenericHeuristic.R . clustering.heuristics.InformationGainHeuristic.R . clustering.heuristics.KendallHeuristic.R . clustering.heuristics.MCCHeuristic.R . clustering.heuristics.MultinformationHeuristic.R . clustering.heuristics.OddsRatioHeuristic.R . clustering.heuristics.PearsonHeuristic.R . clustering.heuristics.SpearmanHeuristic.R . clustering.plot.BinaryPlot.R . clustering.plot.GenericPlot.R . clustering.strategies.DependencyBasedStrategy.R . clustering.strategies.DependencyBasedStrategyConfiguration.R . clustering.strategies.GenericClusteringStrategy.R . clustering.strategies.SimpleStrategy.R . clustering.strategies.StrategyConfiguration.R . clustering.strategies.TypeBasedStrategy.R . data.DIterator.R . data.Dataset.R . data.DatasetLoader.R . data.FIterator.R . data.HDDataset.R . data.HDSubset.R . data.Subset.R . data.Trainset.R . measures.Accuracy.R . measures.ConfMatrix.R . measures.FN.R . measures.FP.R . measures.Kappa.R . measures.MCC.R . measures.MeasureFunction.R . measures.NPV.R . measures.PPV.R . measures.Precision.R . measures.Recall.R . measures.Sensitivity.R . measures.Specificity.R . measures.TN.R . measures.TP.R . models.ExecutedModels.R . models.Model.R . models.summaryFunction.NoProbability.R . models.summaryFunction.SummaryFunction.R . models.summaryFunction.UseProbability.R . models.trainFunctions.TrainFunction.R . models.trainFunctions.TwoClass.R . models.utility.DefaultModelFit.R . models.utility.GenericModelFit.R . prediction.ClassMajorityVoting.R . prediction.ClassWeightedVoting.R . prediction.ClassificationOutput.R . prediction.ClusterPredictions.R . prediction.CombinedMetrics.R . prediction.CombinedVoting.R . prediction.FinalPred.R . prediction.Methodology.R . prediction.MinimizeFN.R . prediction.MinimizeFP.R . prediction.Prediction.R . prediction.PredictionOutput.R . prediction.ProbAverageVoting.R . prediction.ProbAverageWeightedVoting.R . prediction.ProbBasedMethodology.R . prediction.SimpleVoting.R . prediction.SingleVoting.R . prediction.TrainOutput.R . prediction.VotingStrategy.R .  Full D2MCS package functions and examples
Downloads during the last 30 days
02/2702/2803/0103/0203/0303/0403/0503/0603/0703/0803/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/27Downloads for D2MCS24681012141618TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
landmix  
Landmark Prediction for Mixture Data
Non-parametric prediction of survival outcomes for mixture data that incorporates covariates and a l ...
Download / Learn more Package Citations See dependency  
gglgbtq  
Show Pride on 'ggplot2' Plots
Provides multiple palettes based on pride flags with tailored themes. ...
Download / Learn more Package Citations See dependency  

23,842

R Packages

207,311

Dependencies

64,420

Author Associations

23,781

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA