R package citation, R package reverse dependencies, R package scholars, install an r package from GitHub hy is package acceptance pending why is package undeliverable amazon why is package on hold dhl tour packages why in r package r and r package full form why is r free why r is bad which r package to install which r package has which r package which r package version which r package readxl which r package ggplot which r package fread which r package license where is package.json where is package-lock.json where is package.swift where is package explorer in eclipse where is package where is package manager unity where is package installer android where is package manager console in visual studio who r package which r package to install which r package version who is package who is package deal who is package design r and r package full form r and r package meaning what r package has what package r what is package in java what is package what is package-lock.json what is package in python what is package.json what is package installer do r package can't install r packages r can't find package r can't load package can't load xlsx package r can't install psych package r can't install sf package r Write if else in NONMEM pk pd
BayesMallows
View on CRAN: Click
here
Download and install BayesMallows package within the R console
Install from CRAN:
install.packages("BayesMallows")
Install from Github:
library("remotes")
install_github("cran/BayesMallows")
Install by package version:
library("remotes")
install_version("BayesMallows", "2.2.2")
Attach the package and use:
library("BayesMallows")
Maintained by
Oystein Sorensen
[Scholar Profile | Author Map]
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-10-08
Latest Update: 2023-08-24
Description:
An implementation of the Bayesian version of the Mallows rank model
(Vitelli et al., Journal of Machine Learning Research, 2018 ;
Crispino et al., Annals of Applied Statistics, 2019 ;
Sorensen et al., R Journal, 2020 ;
Stein, PhD Thesis, 2023 ). Both Metropolis-Hastings
and sequential Monte Carlo algorithms for estimating the models are available. Cayley, footrule,
Hamming, Kendall, Spearman, and Ulam distances are supported in the models. The rank data to be
analyzed can be in the form of complete rankings, top-k rankings, partially missing rankings, as well
as consistent and inconsistent pairwise preferences. Several functions for plotting and studying the
posterior distributions of parameters are provided. The package also provides functions for estimating
the partition function (normalizing constant) of the Mallows rank model, both with the importance
sampling algorithm of Vitelli et al. and asymptotic approximation with the IPFP algorithm
(Mukherjee, Annals of Statistics, 2016 ).
How to cite:
Oystein Sorensen (2018). BayesMallows: Bayesian Preference Learning with the Mallows Rank Model. R package version 2.2.2, https://cran.r-project.org/web/packages/BayesMallows. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.1.0 (2018-10-08 12:50), 0.1.1 (2018-10-15 20:20), 0.2.0 (2018-11-30 17:40), 0.3.0 (2019-01-30 19:23), 0.3.1 (2019-02-01 16:13), 0.4.0 (2019-02-22 15:30), 0.4.1 (2019-09-05 12:20), 0.4.2 (2020-03-23 14:40), 0.4.3 (2020-06-20 23:10), 0.4.4 (2020-08-07 10:32), 0.5.0 (2020-08-28 13:10), 1.0.0 (2021-01-08 10:30), 1.0.1 (2021-02-23 10:50), 1.0.2 (2021-06-04 16:50), 1.0.3 (2021-10-14 15:00), 1.0.4 (2021-11-17 12:40), 1.1.0 (2021-12-03 23:50), 1.1.1 (2022-04-02 01:40), 1.1.2 (2022-04-11 16:32), 1.2.0 (2022-05-25 01:50), 1.2.1 (2022-11-04 16:10), 1.2.2 (2023-02-03 14:52), 1.3.0 (2023-03-10 17:20), 1.3.1 (2023-08-22 00:40), 1.3.2 (2023-08-24 16:40), 1.4.0 (2023-10-04 19:10), 1.5.0 (2023-11-25 14:00), 2.0.0 (2024-01-15 11:10), 2.0.1 (2024-01-25 15:40), 2.1.0 (2024-03-13 13:20), 2.1.1 (2024-03-15 13:30), 2.2.0 (2024-04-19 09:12), 2.2.1 (2024-04-22 22:20)
Other packages that cited BayesMallows R package
View BayesMallows citation profile
Other R packages that BayesMallows depends,
imports, suggests or enhances
Complete documentation for BayesMallows
Functions, R codes and Examples using
the BayesMallows R package
Some associated functions: BayesMallows-package . BayesMallows . assess_convergence . assign_cluster . asymptotic_partition_function . beach_preferences . bernoulli_data . calculate_backward_probability . calculate_forward_probability . cluster_data . compute_consensus.BayesMallows . compute_consensus.consensus_SMCMallows . compute_consensus . compute_expected_distance . compute_importance_sampling_estimate . compute_mallows . compute_mallows_mixtures . compute_observation_frequency . compute_posterior_intervals.BayesMallows . compute_posterior_intervals.SMCMallows . compute_posterior_intervals . compute_posterior_intervals_alpha . compute_posterior_intervals_rho . compute_rank_distance . compute_rho_consensus . correction_kernel . correction_kernel_pseudo . create_ranking . dot-generate_transitive_closure . estimate_partition_function . expected_dist . generate_constraints . generate_initial_ranking . generate_transitive_closure . get_cardinalities . get_exponent_sum . get_mallows_loglik . get_partition_function . get_rank_distance . get_sample_probabilities . get_transitive_closure . heat_plot . label_switching . leap_and_shift_probs . log_expected_dist . metropolis_hastings_alpha . metropolis_hastings_aug_ranking . metropolis_hastings_rho . obs_freq . plot.BayesMallows . plot.SMCMallows . plot_alpha_posterior . plot_elbow . plot_rho_posterior . plot_top_k . potato_true_ranking . potato_visual . potato_weighing . predict_top_k . print.BayesMallows . print.BayesMallowsMixtures . rank_conversion . rank_distance . rank_freq_distr . rmallows . run_mcmc . sample_dataset . sample_mallows . set_compute_options . set_initial_values . set_model_options . set_priors . set_smc_options . setup_rank_data . smc_mallows_new_item_rank . smc_mallows_new_users . smc_processing . sushi_rankings . update_mallows . validate_permutation .
Some associated R codes: BayesMallows.R . RcppExports.R . all_topological_sorts.R . assess_convergence.R . assign_cluster.R . catch-routine-registration.R . compute_consensus.R . compute_mallows.R . compute_mallows_mixtures.R . compute_observation_frequency.R . compute_posterior_intervals.R . compute_rank_distance.R . data.R . estimate_partition_function.R . expected_dist.R . generate_constraints.R . generate_initial_ranking.R . generate_transitive_closure.R . get_cardinalities.R . get_mallows_loglik.R . get_transitive_closure.R . heat_plot.R . label_switching.R . misc.R . misc_expected_dist.R . obs_freq.R . plot.BayesMallows.R . plot.R . plot_elbow.R . plot_top_k.R . predict_top_k.R . print.BayesMallows.R . print.BayesMallowsMixtures.R . print.R . rank_conversion.R . rank_distance.R . rank_freq_distr.R . sample_mallows.R . set_compute_options.R . set_initial_values.R . set_model_options.R . set_priors.R . set_smc_options.R . setup_rank_data.R . smc_mallows_deprecated.R . smc_post_processing_functions.R . tidy_mcmc.R . update_mallows.R . validation_functions.R . Full BayesMallows package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by
helping add
Reviews / comments / questions /suggestions ↴↴↴
Today's Hot Picks in Authors and Packages
Rfast2
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Manos Papadakis (view profile)
quickcode
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Obinna Obianom (view profile)
elect
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Ardo van den Hout (view profile)
dmlalg
Implementation of double machine learning (DML) algorithms in R,
based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Corinne Emmenegger (view profile)
wordspace
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Stephanie Evert (view profile)
LOGANTree
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Qi Qin (view profile)