Other packages > Find by keyword >

BayesMallows  

Bayesian Preference Learning with the Mallows Rank Model
View on CRAN: Click here


Download and install BayesMallows package within the R console
Install from CRAN:
install.packages("BayesMallows")

Install from Github:
library("remotes")
install_github("cran/BayesMallows")

Install by package version:
library("remotes")
install_version("BayesMallows", "2.2.2")



Attach the package and use:
library("BayesMallows")
Maintained by
Oystein Sorensen
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-10-08
Latest Update: 2023-08-24
Description:
An implementation of the Bayesian version of the Mallows rank model (Vitelli et al., Journal of Machine Learning Research, 2018 ; Crispino et al., Annals of Applied Statistics, 2019 ; Sorensen et al., R Journal, 2020 ; Stein, PhD Thesis, 2023 ). Both Metropolis-Hastings and sequential Monte Carlo algorithms for estimating the models are available. Cayley, footrule, Hamming, Kendall, Spearman, and Ulam distances are supported in the models. The rank data to be analyzed can be in the form of complete rankings, top-k rankings, partially missing rankings, as well as consistent and inconsistent pairwise preferences. Several functions for plotting and studying the posterior distributions of parameters are provided. The package also provides functions for estimating the partition function (normalizing constant) of the Mallows rank model, both with the importance sampling algorithm of Vitelli et al. and asymptotic approximation with the IPFP algorithm (Mukherjee, Annals of Statistics, 2016 ).
How to cite:
Oystein Sorensen (2018). BayesMallows: Bayesian Preference Learning with the Mallows Rank Model. R package version 2.2.2, https://cran.r-project.org/web/packages/BayesMallows. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.1.0 (2018-10-08 12:50), 0.1.1 (2018-10-15 20:20), 0.2.0 (2018-11-30 17:40), 0.3.0 (2019-01-30 19:23), 0.3.1 (2019-02-01 16:13), 0.4.0 (2019-02-22 15:30), 0.4.1 (2019-09-05 12:20), 0.4.2 (2020-03-23 14:40), 0.4.3 (2020-06-20 23:10), 0.4.4 (2020-08-07 10:32), 0.5.0 (2020-08-28 13:10), 1.0.0 (2021-01-08 10:30), 1.0.1 (2021-02-23 10:50), 1.0.2 (2021-06-04 16:50), 1.0.3 (2021-10-14 15:00), 1.0.4 (2021-11-17 12:40), 1.1.0 (2021-12-03 23:50), 1.1.1 (2022-04-02 01:40), 1.1.2 (2022-04-11 16:32), 1.2.0 (2022-05-25 01:50), 1.2.1 (2022-11-04 16:10), 1.2.2 (2023-02-03 14:52), 1.3.0 (2023-03-10 17:20), 1.3.1 (2023-08-22 00:40), 1.3.2 (2023-08-24 16:40), 1.4.0 (2023-10-04 19:10), 1.5.0 (2023-11-25 14:00), 2.0.0 (2024-01-15 11:10), 2.0.1 (2024-01-25 15:40), 2.1.0 (2024-03-13 13:20), 2.1.1 (2024-03-15 13:30), 2.2.0 (2024-04-19 09:12), 2.2.1 (2024-04-22 22:20)
Other packages that cited BayesMallows R package
View BayesMallows citation profile
Other R packages that BayesMallows depends, imports, suggests or enhances
Complete documentation for BayesMallows
Functions, R codes and Examples using the BayesMallows R package
Some associated functions: BayesMallows-package . BayesMallows . assess_convergence . assign_cluster . asymptotic_partition_function . beach_preferences . bernoulli_data . calculate_backward_probability . calculate_forward_probability . cluster_data . compute_consensus.BayesMallows . compute_consensus.consensus_SMCMallows . compute_consensus . compute_expected_distance . compute_importance_sampling_estimate . compute_mallows . compute_mallows_mixtures . compute_observation_frequency . compute_posterior_intervals.BayesMallows . compute_posterior_intervals.SMCMallows . compute_posterior_intervals . compute_posterior_intervals_alpha . compute_posterior_intervals_rho . compute_rank_distance . compute_rho_consensus . correction_kernel . correction_kernel_pseudo . create_ranking . dot-generate_transitive_closure . estimate_partition_function . expected_dist . generate_constraints . generate_initial_ranking . generate_transitive_closure . get_cardinalities . get_exponent_sum . get_mallows_loglik . get_partition_function . get_rank_distance . get_sample_probabilities . get_transitive_closure . heat_plot . label_switching . leap_and_shift_probs . log_expected_dist . metropolis_hastings_alpha . metropolis_hastings_aug_ranking . metropolis_hastings_rho . obs_freq . plot.BayesMallows . plot.SMCMallows . plot_alpha_posterior . plot_elbow . plot_rho_posterior . plot_top_k . potato_true_ranking . potato_visual . potato_weighing . predict_top_k . print.BayesMallows . print.BayesMallowsMixtures . rank_conversion . rank_distance . rank_freq_distr . rmallows . run_mcmc . sample_dataset . sample_mallows . set_compute_options . set_initial_values . set_model_options . set_priors . set_smc_options . setup_rank_data . smc_mallows_new_item_rank . smc_mallows_new_users . smc_processing . sushi_rankings . update_mallows . validate_permutation . 
Some associated R codes: BayesMallows.R . RcppExports.R . all_topological_sorts.R . assess_convergence.R . assign_cluster.R . catch-routine-registration.R . compute_consensus.R . compute_mallows.R . compute_mallows_mixtures.R . compute_observation_frequency.R . compute_posterior_intervals.R . compute_rank_distance.R . data.R . estimate_partition_function.R . expected_dist.R . generate_constraints.R . generate_initial_ranking.R . generate_transitive_closure.R . get_cardinalities.R . get_mallows_loglik.R . get_transitive_closure.R . heat_plot.R . label_switching.R . misc.R . misc_expected_dist.R . obs_freq.R . plot.BayesMallows.R . plot.R . plot_elbow.R . plot_top_k.R . predict_top_k.R . print.BayesMallows.R . print.BayesMallowsMixtures.R . print.R . rank_conversion.R . rank_distance.R . rank_freq_distr.R . sample_mallows.R . set_compute_options.R . set_initial_values.R . set_model_options.R . set_priors.R . set_smc_options.R . setup_rank_data.R . smc_mallows_deprecated.R . smc_post_processing_functions.R . tidy_mcmc.R . update_mallows.R . validation_functions.R .  Full BayesMallows package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA