Other packages > Find by keyword >

ANTs  

Animal Network Toolkit Software
View on CRAN: Click here


Download and install ANTs package within the R console
Install from CRAN:
install.packages("ANTs")

Install from Github:
library("remotes")
install_github("cran/ANTs")

Install by package version:
library("remotes")
install_version("ANTs", "0.0.16")



Attach the package and use:
library("ANTs")
Maintained by
Sosa Sebastian
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2021-11-10
Latest Update: 2023-09-26
Description:
How animals interact and develop social relationships in face of sociodemographic and ecological pressures is of great interest. New methodologies, in particular Social Network Analysis (SNA), allow us to elucidate these types of questions. However, the different methodologies developed to that end and the speed at which they emerge make their use difficult. Moreover, the lack of communication between the different software developed to provide an answer to the same/different research questions is a source of confusion. The R package Animal Network Toolkit 'ANTs' was developed with the aim of implementing in one package the different social network analysis techniques currently used in the study of animal social networks. Hence, ANT is a toolkit for animal research allowing among other things to: 1) measure global, dyadic and nodal networks metrics; 2) perform data randomization: pre- and post-network (node and link permutations); 3) perform statistical permutation tests as correlation test (), t-test (), General Linear Model (), General Linear Mixed Model (), deletion simulation (), 'Matrix TauKr correlations' (). The package is partially coded in C++ using the R package 'Rcpp' for an optimal coding speed. The package gives researchers a workflow from the raw data to the achievement of statistical analyses, allowing for a multilevel approach (): from the individual's position and role within the network, to the identification of interaction patterns, and the study of the overall network properties. Furthermore, ANT also provides a guideline on the SNA techniques used: 1) from the appropriate randomization technique according to the data collected; 2) to the choice, the meaning, the limitations and advantages of the network metrics to apply, 3) and the type of statistical tests to run. The ANT project is multi-collaborative, aiming to provide access to advanced social network analysis techniques and to create new ones that meet researchers' needs in future versions. The ANT project is multi-collaborative, aiming to provide access to advanced social network analysis techniques and to create new ones that meet researchers' needs in future versions.
How to cite:
Sosa Sebastian (2021). ANTs: Animal Network Toolkit Software. R package version 0.0.16, https://cran.r-project.org/web/packages/ANTs. Accessed 21 Dec. 2024.
Previous versions and publish date:
0.0.1 (2021-11-10 17:10), 0.0.13 (2021-11-20 02:30), 0.0.14 (2022-03-24 00:10), 0.0.15 (2022-04-05 11:30), 0.0.16 (2022-07-03 00:20)
Other packages that cited ANTs R package
View ANTs citation profile
Other R packages that ANTs depends, imports, suggests or enhances
Functions, R codes and Examples using the ANTs R package
Some associated functions: ant . assoc.gfi . assoc.indices . assoc_mat . assoc_mat_full . assoc_mat_one_id . check.df . check.id . check.mat . convert.socprog . df.col.findId . df.create . df.create.single . df.ctrlFactor . df.to.gbi.focal . df.to.gbi . df.to.mat . df_merge . df_to_gbi . edgl.to.grp . edgl_to_matrix . error_matrix . gbi.to.df . gbi_createEmpty . grp.to.edgl . import.df . import.mat . laplacian_energy_degrees . ldf_merge . listDf_merge_single_column . list_lapply . list_to_df . mat.binaryzation . mat.lp . mat.symetrize . mat.to.edgl . mat.vectorization . mat_binaryzation . mat_col_sumsBinary . mat_cols_sums . mat_dim . mat_filter . mat_find0 . mat_isSquare . mat_row_extract . mat_rows_sums . mat_rows_sumsBinary . merge.met . met.affinity . met.affinity.single . met.all . met.alterDegree . met.assortativity . met.assortativityCat . met.assortatvityContinuous . met.betweenness . met.betweenness.single . met.cc . met.ci . met.ci.single . met.coutTriangles . met.degree . met.degree.single . met.density . met.dge.single . met.diameter . met.disparity . met.disparity.single . met.eigen . met.eigen.single . met.ge . met.ge.single . met.geodesic . met.geodesicDiameter.single . met.indegree . met.indegree.single . met.instrength . met.instrength.single . met.lp . met.lp.single . met.lpEnergyEigen . met.lpcB . met.lpcW . met.lpcentEvcent . met.outdegree . met.outdegree.single . met.outstrength . met.outstrength.single . met.reach . met.reach.single . met.ri . met.ri.single . met.strength . met.strength.single . met_strength . perm.dataStream.focal . perm.dataStream.group . perm.double.focal . perm.double.focal.single . perm.double.grp . perm.double.grp.single . perm.ds.focal . perm.ds.grp . perm.edgl . perm.met.degree.single . perm.net.degree . perm.net.links.single . perm.net.lk . perm.net.lk.w . perm.net.nl . perm.net.nl.str . perm.net.nl.str.single . perm.net.weigths . perm.nodeLabel . perm.redo . perm_dataStream1 . perm_dataStream1_focal . perm_dataStream_ControlFactor . perm_matVec . perm_net_weigths . perm_nl_rf . perm_nodeLabels . perm_vec_factor . perm_vec_int . post.dist . redo.ds.focal.cum . redo.ds.focal.glm . redo.ds.focal.glmm . redo.ds.focal.lm . redo.ds.grp . redo.perm.ds.grp.cum . redo.perm.ds.grp.cum.scd . redo_perm_dataStream1_focal . redo_perm_dataStream_1 . redo_perm_dataStream_ControlFactor . redo_perm_dataStream_ControlFactor_scd . redo_perm_dataStream_focal . sampling.effort . sampling.robustness . sampling.uncertainty . sim.df . sim.focal.directed . sim.focal.undirected . sim.gbi.att . sim.gbi . sim.grp . sim.m . sim.socprog . stat.ci . stat.cor . stat.deletions . stat.deletionsPlot . stat.glm . stat.glmm.no.first.model . stat.glmm . stat.glmm.parallel . stat.lm . stat.model.diag . stat.p . stat.t . stat.tauKr . stat.tauKrPartial . stat.tauKrPartialPermSig . stat.tauKrPermSig . stat.tauKrSimple . tauSD . time.heterogeneity . tobs_to_mat . vec_char_as_factor . vec_char_extract_IdValue . vec_fill . vec_intersect . vec_levels . vec_lowertri_to_mat . vec_num_extract_IdValue . vec_sample . vec_sum . vec_to_mat . vec_to_mat_add_diag . vec_unique . vec_vec_multiply . vec_vec_sum . vis.post.distribution . vis.post.distribution2 . which.metric . which.protocol . which_equal . 
Some associated R codes: RcppExports.R . ant.R . assoc.gfi.R . assoc.indices.R . check.df.R . check.id.R . check.matrix.R . convert.socprog.R . df.col.findId.R . df.create.R . df.create.single.R . df.ctrlFactor.R . df.to.gbi.R . df.to.gbi.focal.R . df.to.mat.R . edgl.to.grp.R . error_matrix.R . gbi.to.df.R . grp.to.edgl.R . import.df.R . import.mat.R . mat.binaryzation.R . mat.lp.R . mat.symetrize.R . mat.to.edgl.R . mat.vectorization.R . merge.met.R . met.GE.single.R . met.affinity.R . met.affinity.single.R . met.all.single.mat.R . met.alterDegree.R . met.assortativity.R . met.assortativityCat.R . met.betweenness.R . met.betweenness.single.R . met.cc.R . met.ci.R . met.ci.single.R . met.coutTriangles.R . met.degree.R . met.degree.single.R . met.density.R . met.dge.single.R . met.diameter.R . met.disparity.R . met.disparity.single.R . met.eigen.R . met.eigen.single.R . met.ge.R . met.geodesic.R . met.geodesicDiameter.single.R . met.indegree.R . met.indegree.single.R . met.instrength.R . met.instrength.single.R . met.lp.R . met.lp.single.R . met.lpEnergyDegree.R . met.lpEnergyEigen.R . met.lpcB.R . met.lpcW.R . met.lpcentEvcent.R . met.outdegree.R . met.outdegree.single.R . met.outstrength.R . met.outstrength.single.R . met.reach.R . met.reach.single.R . met.ri.R . met.ri.single.R . met.strength.R . met.strength.single.R . onLoad.R . perm.dataStream.focal.R . perm.dataStream.group.R . perm.degree.single.R . perm.double.focal.R . perm.double.focal.single.R . perm.double.grp.R . perm.double.grp.single.R . perm.ds.focal.R . perm.ds.grp.R . perm.edgl.R . perm.net.degree.R . perm.net.links.R . perm.net.links.single.R . perm.net.lk.w.R . perm.net.nl.R . perm.net.nl.str.R . perm.net.weigths.R . perm.nodeLabel.R . perm.p.R . perm.redo.R . post.dist.R . redo.ds.focal.cum.R . redo.ds.focal.glm.R . redo.ds.focal.lm.R . redo.ds.grp.glm.R . redo.ds.grp.lm.R . redo.perm.ds.focal.R . redo.perm.ds.focal.cum.scd.R . redo.perm.ds.grp.R . sampling.effort.R . sampling.robustness.R . sampling.uncertainty.R . sim.df.R . sim.focal.directed.R . sim.focal.undirected.R . sim.gbi.R . sim.gbi.att.R . sim.grp.R . sim.m.R . sim.socprog.R . stat.ci.R . stat.cor.R . stat.deletions.R . stat.deletionsPlot.R . stat.glm.R . stat.glmm.R . stat.glmm.no.first.model.R . stat.glmm.parallel2.R . stat.lm.R . stat.model.diag.R . stat.p.R . stat.t.R . stat.tauKr.R . stat.tauKrPartial.R . stat.tauKrPartialPermSig.R . stat.tauKrPermSig.R . stat.tauKrSimple.R . tauSD.R . time.heterogeneity.R . vis.post.distribution.R . vis.post.distribution2.R . which.metric.R . which.protocol.R .  Full ANTs package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

SEIRfansy  
Extended Susceptible-Exposed-Infected-Recovery Model
Extended Susceptible-Exposed-Infected-Recovery Model for handling high false negative rate and symp ...
Download / Learn more Package Citations See dependency  
batteryreduction  
An R Package for Data Reduction by Battery Reduction
Battery reduction is a method used in data reduction. It uses Gram-Schmidt orthogonal rotations to f ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
CIFsmry  
Weighted summary of cumulative incidence functions
Estimate of cumulative incidence function in two samples. Provide weighted summary statistics based ...
Download / Learn more Package Citations See dependency  
condGEE  
Parameter Estimation in Conditional GEE for Recurrent Event Gap Times
Solves for the mean parameters, the variance parameter, and their asymptotic variance in a condition ...
Download / Learn more Package Citations See dependency  
helda  
Preprocess Data and Get Better Insights from Machine Learning Models
The main focus is on preprocessing and data visualization of machine learning models performances.So ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA