R package citation, R package reverse dependencies, R package scholars, install an r package from GitHub hy is package acceptance pending why is package undeliverable amazon why is package on hold dhl tour packages why in r package r and r package full form why is r free why r is bad which r package to install which r package has which r package which r package version which r package readxl which r package ggplot which r package fread which r package license where is package.json where is package-lock.json where is package.swift where is package explorer in eclipse where is package where is package manager unity where is package installer android where is package manager console in visual studio who r package which r package to install which r package version who is package who is package deal who is package design r and r package full form r and r package meaning what r package has what package r what is package in java what is package what is package-lock.json what is package in python what is package.json what is package installer do r package can't install r packages r can't find package r can't load package can't load xlsx package r can't install psych package r can't install sf package r Write if else in NONMEM pk pd
wrProteo
View on CRAN: Click
here
Download and install wrProteo package within the R console
Install from CRAN:
install.packages("wrProteo")
Install from Github:
library("remotes")
install_github("cran/wrProteo")
Install by package version:
library("remotes")
install_version("wrProteo", "1.13.0")
Attach the package and use:
library("wrProteo")
Maintained by
Wolfgang Raffelsberger
[Scholar Profile | Author Map]
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2020-01-08
Latest Update: 2024-02-14
Description:
Data analysis of proteomics experiments by mass spectrometry is supported by this collection of functions mostly dedicated to the analysis of (bottom-up) quantitative (XIC) data. Fasta-formatted proteomes (eg from UniProt Consortium <doi:10.1093/nar/gky1049>) can be read with automatic parsing and multiple annotation types (like species origin, abbreviated gene names, etc) extracted. Initial results from multiple software for protein (and peptide) quantitation can be imported (to a common format): MaxQuant (Tyanova et al 2016 <doi:10.1038/nprot.2016.136>), Dia-NN (Demichev et al 2020 <doi:10.1038/s41592-019-0638-x>), Fragpipe(da Veiga et al 2020 <doi:10.1038/s41592-020-0912-y>), MassChroq (Valot et al 2011 <doi:10.1002/pmic.201100120>), OpenMS (Strauss et al 2021 <doi:10.1038/nmeth.3959>), ProteomeDiscoverer (Orsburn 2021 <doi:10.3390/proteomes9010015>), Proline (Bouyssie et al 2020 <doi:10.1093/bioinformatics/btaa118>), AlphaPept (preprint Strauss et al <doi:10.1101/2021.07.23.453379>) and Wombat-P (Bouyssie et al 2023 <doi:10.1021/acs.jproteome.3c00636>. Meta-data provided by initial analysis software and/or in sdrf format can be integrated to the analysis. Quantitative proteomics measurements frequently contain multiple NA values, due to physical absence of given peptides in some samples, limitations in sensitivity or other reasons. Help is provided to inspect the data graphically to investigate the nature of NA-values via their respective replicate measurements and to help/confirm the choice of NA-replacement algorithms. Meta-data in sdrf-format (Perez-Riverol et al 2020 <doi:10.1021/acs.jproteome.0c00376>) or similar tabular formats can be imported and included. Missing values can be inspected and imputed based on the concept of NA-neighbours or other methods. Dedicated filtering and statistical testing using the framework of package 'limma' <doi:10.18129/B9.bioc.limma> can be run, enhanced by multiple rounds of NA-replacements to provide robustness towards rare stochastic events. Multi-species samples, as frequently used in benchmark-tests (eg Navarro et al 2016 <doi:10.1038/nbt.3685>, Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>), can be run with special options considering such sub-groups during normalization and testing. Subsequently, ROC curves (Hand and Till 2001 <doi:10.1023/A:1010920819831>) can be constructed to compare multiple analysis approaches. As detailed example the data-set from Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>) quantified by MaxQuant, ProteomeDiscoverer, and Proline is provided with a detailed analysis of heterologous spike-in proteins.
How to cite:
Wolfgang Raffelsberger (2020). wrProteo: Proteomics Data Analysis Functions. R package version 1.13.0, https://cran.r-project.org/web/packages/wrProteo. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.0.0 (2020-01-08 17:10), 1.1.1 (2020-04-29 16:00), 1.1.2 (2020-07-15 17:50), 1.1.3 (2020-07-18 07:40), 1.1.4 (2020-10-07 16:00), 1.2.0 (2020-10-18 23:50), 1.3.0 (2020-11-27 20:10), 1.4.0 (2021-03-10 13:00), 1.4.1 (2021-04-15 22:00), 1.4.2 (2021-07-05 17:50), 1.4.3 (2021-07-13 11:30), 1.5.0 (2022-01-10 13:40), 1.6.0 (2022-03-01 18:30), 1.7.0.1 (2022-11-24 17:20), 1.7.1 (2023-01-27 15:00), 1.8.0 (2023-03-23 17:20), 1.9.0 (2023-04-20 18:50), 1.10.0 (2023-06-16 10:10), 1.10.1 (2023-08-18 12:10), 1.11.0.1 (2024-02-14 17:00), 1.12.0 (2024-07-26 15:00)
Other packages that cited wrProteo R package
View wrProteo citation profile
Other R packages that wrProteo depends,
imports, suggests or enhances
Complete documentation for wrProteo
Functions, R codes and Examples using
the wrProteo R package
Some associated functions: AAmass . AucROC . VolcanoPlotW2 . cleanListCoNames . combineMultFilterNAimput . convAASeq2mass . corColumnOrder . countNoOfCommonPeptides . dot-atomicMasses . dot-checkKnitrProt . dot-checkSetupGroups . dot-commonSpecies . dot-extrSpecPref . dot-imputeNA . dot-plotQuantDistr . exportSdrfDraft . extrSpeciesAnnot . extractTestingResults . foldChangeArrow2 . getUPS1acc . isolNAneighb . massDeFormula . matrixNAinspect . matrixNAneighbourImpute . plotROC . razorNoFilter . readDiaNNFile . readDiaNNPeptides . readFasta2 . readFragpipeFile . readMassChroQFile . readMaxQuantFile . readMaxQuantPeptides . readOpenMSFile . readProlineFile . readProtDiscovFile . readProtDiscovPeptides . readProtDiscovererPeptides . readProteomeDiscovererFile . readSampleMetaData . readSdrf . readUCSCtable . readUniProtExport . readWombatNormFile . removeSampleInList . replMissingProtNames . shortSoftwName . summarizeForROC . test2grp . testRobustToNAimputation . writeFasta2 .
Some associated R codes: AAmass.R . AucRoc.R . VolcanoPlotW2.R . cleanListCoNames.R . combineMultFilterNAimput.R . convAASeq2mass.R . corColumnOrder.R . countNoOfCommonPeptides.R . exportSdrfDraft.R . extrSpeciesAnnot.R . extractTestingResults.R . foldChangeArrow2.R . getUPS1acc.R . isolNAneighb.R . massDeFormula.R . matrixNAinspect.R . matrixNAneighbourImpute.R . plotROC.R . razorNoFilter.R . readDiaNNFile.R . readDiaNNPeptides.R . readFasta2.R . readFragpipeFile.R . readMassChroQFile.R . readMaxQuantFile.R . readMaxQuantPeptides.R . readOpenMSFile.R . readProlineFile.R . readProtDiscovFile.R . readProtDiscovPeptides.R . readProtDiscovererPeptides.R . readProteomeDiscovererFile.R . readSampleMetaData.R . readSdrf.R . readUCSCtable.R . readUniProtExport.R . readWombatNormFile.R . removeSampleInList.R . replMissingProtNames.R . shortSoftwName.R . summarizeForROC.R . test2grp.R . testRobustToNAimputation.R . writeFasta2.R . Full wrProteo package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by
helping add
Reviews / comments / questions /suggestions ↴↴↴
Today's Hot Picks in Authors and Packages
tropAlgebra
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Muhammad Kashif Hanif (view profile)
Rfast2
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Manos Papadakis (view profile)
LOGANTree
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Qi Qin (view profile)
composits
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Sevvandi Kandanaarachchi (view profile)
wordspace
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Stephanie Evert (view profile)
quickcode
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Obinna Obianom (view profile)