Other packages > Find by keyword >

utiml  

Utilities for Multi-Label Learning
View on CRAN: Click here


Download and install utiml package within the R console
Install from CRAN:
install.packages("utiml")

Install from Github:
library("remotes")
install_github("cran/utiml")

Install by package version:
library("remotes")
install_version("utiml", "0.1.7")



Attach the package and use:
library("utiml")
Maintained by
Adriano Rivolli
[Scholar Profile | Author Map]
First Published: 2016-04-08
Latest Update: 2021-05-31
Description:
Multi-label learning strategies and others procedures to support multi- label classification in R. The package provides a set of multi-label procedures such as sampling methods, transformation strategies, threshold functions, pre-processing techniques and evaluation metrics. A complete overview of the matter can be seen in Zhang, M. and Zhou, Z. (2014) <doi:10.1109/TKDE.2013.39> and Gibaja, E. and Ventura, S. (2015) A Tutorial on Multi-label Learning.
How to cite:
Adriano Rivolli (2016). utiml: Utilities for Multi-Label Learning. R package version 0.1.7, https://cran.r-project.org/web/packages/utiml. Accessed 07 Apr. 2025.
Previous versions and publish date:
0.1.0 (2016-04-08 10:44), 0.1.1 (2016-11-19 21:28), 0.1.2 (2017-04-06 07:38), 0.1.3 (2017-07-31 23:57), 0.1.4 (2018-04-20 02:02), 0.1.5 (2019-03-16 06:40), 0.1.6 (2020-02-07 07:30)
Other packages that cited utiml R package
View utiml citation profile
Other R packages that utiml depends, imports, suggests or enhances
Complete documentation for utiml
Functions, R codes and Examples using the utiml R package
Some associated functions: as.bipartition . as.matrix.mlconfmat . as.matrix.mlresult . as.mlresult . as.probability . as.ranking . baseline . br . brplus . cc . clr . compute_multilabel_predictions . create_holdout_partition . create_kfold_partition . create_random_subset . create_subset . cv . dbr . ebr . ecc . eps . esl . fill_sparse_mldata . fixed_threshold . foodtruck . homer . is.bipartition . is.probability . lcard_threshold . lift . lp . mbr . mcut_threshold . merge_mlconfmat . mldata . mlknn . mlpredict . mltrain . multilabel_confusion_matrix . multilabel_evaluate . multilabel_measures . multilabel_prediction . normalize_mldata . ns . partition_fold . pcut_threshold . plus-.mlconfmat . ppt . predict.BASELINEmodel . predict.BRPmodel . predict.BRmodel . predict.CCmodel . predict.CLRmodel . predict.DBRmodel . predict.EBRmodel . predict.ECCmodel . predict.EPSmodel . predict.ESLmodel . predict.HOMERmodel . predict.LIFTmodel . predict.LPmodel . predict.MBRmodel . predict.MLKNNmodel . predict.NSmodel . predict.PPTmodel . predict.PSmodel . predict.PruDentmodel . predict.RAkELmodel . predict.RDBRmodel . predict.RPCmodel . print.BRPmodel . print.BRmodel . print.CCmodel . print.CLRmodel . print.DBRmodel . print.EBRmodel . print.ECCmodel . print.EPSmodel . print.ESLmodel . print.LIFTmodel . print.LPmodel . print.MBRmodel . print.MLKNNmodel . print.NSmodel . print.PPTmodel . print.PSmodel . print.PruDentmodel . print.RAkELmodel . print.RDBRmodel . print.RPCmodel . print.kFoldPartition . print.majorityModel . print.mlconfmat . print.mlresult . print.randomModel . prudent . ps . rakel . rcut_threshold . rdbr . remove_attributes . remove_labels . remove_skewness_labels . remove_unique_attributes . remove_unlabeled_instances . replace_nominal_attributes . rpc . scut_threshold . sub-.mlresult . subset_correction . summary.mltransformation . toyml . utiml . utiml_measure_names . 
Some associated R codes: base_learner.R . cross_validation.R . data.R . ensemble.R . evaluation.R . internal.R . method_baseline.R . method_br.R . method_brplus.R . method_cc.R . method_clr.R . method_dbr.R . method_ebr.R . method_ecc.R . method_eps.R . method_esl.R . method_homer.R . method_lift.R . method_lp.R . method_mbr.R . method_mlknn.R . method_ns.R . method_ppt.R . method_prudent.R . method_ps.R . method_rakel.R . method_rdbr.R . method_rpc.R . mldr.R . mlresult.R . pre_process.R . sampling.R . threshold.R . transformation.R . utiml.R . zzz.R .  Full utiml package functions and examples
Downloads during the last 30 days
03/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/3003/3104/0104/0204/0304/0404/0504/06Downloads for utiml024681012141618TrendBars

Today's Hot Picks in Authors and Packages

probout  
Unsupervised Multivariate Outlier Probabilities for Large Datasets
Estimates unsupervised outlier probabilities for multivariate numeric data with many observations fr ...
Download / Learn more Package Citations See dependency  
nutriNetwork  
Structure Learning with Copula Graphical Model
Statistical tool for learning the structure of direct associations among variables for continuous d ...
Download / Learn more Package Citations See dependency  
letsR  
Data Handling and Analysis in Macroecology
Handling, processing, and analyzing geographic data on species' distributions and environmental var ...
Download / Learn more Package Citations See dependency  
ASMap  
Linkage Map Construction using the MSTmap Algorithm
Functions for Accurate and Speedy linkage map construction, manipulation and diagnosis of Doubled Ha ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
MetaAnalyser  
An Interactive Visualisation of Meta-Analysis as a Physical Weighing Machine
An interactive application to visualise meta-analysis data as a physical weighing machine. The inte ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA