Other packages > Find by keyword >

tsensembler  

Dynamic Ensembles for Time Series Forecasting
View on CRAN: Click here


Download and install tsensembler package within the R console
Install from CRAN:
install.packages("tsensembler")

Install from Github:
library("remotes")
install_github("cran/tsensembler")

Install by package version:
library("remotes")
install_version("tsensembler", "0.1.0")



Attach the package and use:
library("tsensembler")
Maintained by
Vitor Cerqueira
[Scholar Profile | Author Map]
First Published: 2017-08-28
Latest Update: 2020-10-27
Description:
A framework for dynamically combining forecasting models for time series forecasting predictive tasks. It leverages machine learning models from other packages to automatically combine expert advice using metalearning and other state-of-the-art forecasting combination approaches. The predictive methods receive a data matrix as input, representing an embedded time series, and return a predictive ensemble model. The ensemble use generic functions 'predict()' and 'forecast()' to forecast future values of the time series. Moreover, an ensemble can be updated using methods, such as 'update_weights()' or 'update_base_models()'. A complete description of the methods can be found in: Cerqueira, V., Torgo, L., Pinto, F., and Soares, C. "Arbitrated Ensemble for Time Series Forecasting." to appear at: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017; and Cerqueira, V., Torgo, L., and Soares, C.: "Arbitrated Ensemble for Solar Radiation Forecasting." International Work-Conference on Artificial Neural Networks. Springer, 2017 <doi:10.1007/978-3-319-59153-7_62>.
How to cite:
Vitor Cerqueira (2017). tsensembler: Dynamic Ensembles for Time Series Forecasting. R package version 0.1.0, https://cran.r-project.org/web/packages/tsensembler. Accessed 10 Apr. 2025.
Previous versions and publish date:
0.0.2 (2017-08-28 14:20), 0.0.3 (2018-03-10 19:30), 0.0.4 (2018-04-13 22:11), 0.0.5 (2019-07-05 20:00)
Other packages that cited tsensembler R package
View tsensembler citation profile
Other R packages that tsensembler depends, imports, suggests or enhances
Complete documentation for tsensembler
Functions, R codes and Examples using the tsensembler R package
Some associated functions: ADE-class . ADE . DETS-class . DETS . EMASE . ade_hat-class . ade_hat . ae . base_ensemble-class . base_ensemble . base_models_loss . best_mvr . blocked_prequential . bm_cubist . bm_ffnn . bm_gaussianprocess . bm_gbm . bm_glm . bm_mars . bm_pls_pcr . bm_ppr . bm_randomforest . bm_svr . bm_xgb . build_base_ensemble . build_committee . combine_predictions . compute_predictions . dets_hat-class . dets_hat . embed_timeseries . get_target . get_top_models . get_y . holdout . intraining_estimations . intraining_predictions . l1apply . learning_base_models . loss_meta_learn . meta_cubist . meta_cubist_predict . meta_ffnn . meta_ffnn_predict . meta_gp . meta_gp_predict . meta_lasso . meta_lasso_predict . meta_mars . meta_mars_predict . meta_pls . meta_pls_predict . meta_ppr . meta_ppr_predict . meta_predict . meta_rf . meta_rf_predict . meta_svr . meta_svr_predict . meta_xgb . meta_xgb_predict . model_recent_performance . model_specs-class . model_specs . model_weighting . mse . normalize . predict-methods . predict_pls_pcr . proportion . rbind_l . recent_lambda_observations . rmse . roll_mean_matrix . se . select_best . sequential_reweighting . sliding_similarity . soft.completion . softmax . split_by . train_ade . train_ade_quick . tsensembler . update_ade . update_ade_meta . update_base_models . update_weights . water_consumption . xgb_optimizer . xgb_predict . xgb_predict_ . 
Some associated R codes: data.R . ensembling-pipes.R . forecast.R . meta-modeling.R . sequential-reweight.R . ts-preprocess.R . utils.R .  Full tsensembler package functions and examples
Downloads during the last 30 days
03/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0404/0504/0604/0704/0804/09Downloads for tsensembler02468101214TrendBars

Today's Hot Picks in Authors and Packages

RODBC  
ODBC Database Access
GRNNs  
General Regression Neural Networks Package
This General Regression Neural Networks Package uses various distance functions. It was motivated b ...
Download / Learn more Package Citations See dependency  
webglobe  
3D Interactive Globes
Displays geospatial data on an interactive 3D globe in the web browser. ...
Download / Learn more Package Citations See dependency  
txtq  
A Small Message Queue for Parallel Processes
This queue is a data structure that lets parallel processes send and receive messages, and it can he ...
Download / Learn more Package Citations See dependency  
ecochange  
Integrating Ecosystem Remote Sensing Products to Derive EBV Indicators
Essential Biodiversity Variables (EBV) are state variables with dimensions on time, space, and biolo ...
Download / Learn more Package Citations See dependency  
xtermStyle  
Terminal Text Formatting Using Escape Sequences
Can be used for coloring output in terminals. It was developed for the standard Ubuntu terminal but ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA