Other packages > Find by keyword >

survivalsvm  

Survival Support Vector Analysis
View on CRAN: Click here


Download and install survivalsvm package within the R console
Install from CRAN:
install.packages("survivalsvm")

Install from Github:
library("remotes")
install_github("cran/survivalsvm")

Install by package version:
library("remotes")
install_version("survivalsvm", "0.0.5")



Attach the package and use:
library("survivalsvm")
Maintained by
Cesaire Fouodo
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2017-06-15
Latest Update: 2018-02-05
Description:
Performs support vectors analysis for data sets with survival outcome. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in the same model.
How to cite:
Cesaire Fouodo (2017). survivalsvm: Survival Support Vector Analysis. R package version 0.0.5, https://cran.r-project.org/web/packages/survivalsvm. Accessed 03 Feb. 2025.
Previous versions and publish date:
0.0.2 (2017-06-15 00:20), 0.0.3 (2017-11-20 14:15), 0.0.4 (2018-01-08 18:11)
Other packages that cited survivalsvm R package
View survivalsvm citation profile
Other R packages that survivalsvm depends, imports, suggests or enhances
Complete documentation for survivalsvm
Functions, R codes and Examples using the survivalsvm R package
Some associated functions: Diffmatrix . HybridObj . Kernel . RegFitObj . VB1FitObj . VB2FitObj . conindex . getAlpha.VB1FitObj . getAlpha.default . getAlpha . getBeta.HybridObj . getBeta.RegFitObj . getBeta.default . getBeta . getBetastar.HybridObj . getBetastar.default . getBetastar . getBinca.default . getBincat.Kernel . getBincat . getDelta.HybridObj . getDelta.default . getDelta . getDifMat.VB1FitObj . getDifMat.default . getDifMat . getKernel.RegFitObj . getKernel.VB1FitObj . getKernel.default . getKernel . getKernpar.Kernel . getKernpar.default . getKernpar . getLogrank . getMat.Diffmatrix . getMat.Kernel . getMat.default . getMat . getOptMeth.RegFitObj . getOptMeth.VB1FitObj . getOptMeth.default . getOptMeth . getSV.RegFitObj . getSV.default . getSV . getType.Diffmatrix . getType.Kernel . getType.default . getType . getXtrain.VB1FitObj . getXtrain.default . getXtrain . getb0.RegFitObj . getb0 . hybridFit . kernelMatrix . logrank . makediff1 . makediff2 . makediff3 . predict.survivalsvm . predictHybrid . predictRegFitObj . predictVB1FitObj . predictVB2FitObj . print.survivalsvm . print.survivalsvmprediction . printHybrid . printRegFitObj . printVB1FitObj . printVB2FitObj . regFit . setAlpha.VB1FitObj . setAlpha.default . setAlpha . setBeta.HybridObj . setBeta.RegFitObj . setBeta.default . setBeta . setBetastar.HybridObj . setBetastar.default . setBetastar . setBincat.Kernel . setBincat.default . setBincat . setDelta.default . setDelta . setDifMat.VB1FitObj . setDifMat.default . setDifMat . setKernel.RegFitObj . setKernel.VB1FitObj . setKernel.default . setKernel . setKernpar.Kernel . setKernpar.default . setKernpar . setMat.Diffmatrix . setMat.Kernel . setMat . setMatrix.default . setOptMeth.RegFitObj . setOptMeth.VB1FitObj . setOptMeth.default . setOptMeth . setSV.RegFitObj . setSV.default . setSV . setType.Diffmatrix . setType.Kernel . setType.default . setType . setXtrain.VB1FitObj . setXtrain.default . setXtrain . setb0.RegFitObj . setb0.default . setb0 . survivalsvm . vanbelle1Fit . vanbelle2Fit . 
Some associated R codes: Diffmatrix.R . hybrid.R . kernels.R . perfomances.R . predictions.R . prints.R . regression.R . survivalsvm.R . vanbelle1.R . vanbelle2.R .  Full survivalsvm package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

HGMND  
Heterogeneous Graphical Model for Non-Negative Data
Graphical model is an informative and powerful tool to explore the conditional dependence relationsh ...
Download / Learn more Package Citations See dependency  
cmce  
Computer Model Calibration for Deterministic and Stochastic Simulators
Implements the Bayesian calibration model described in Pratola and Chkrebtii (2018) ...
Download / Learn more Package Citations See dependency  
metaboData  
Example Metabolomics Data Sets
Data sets from a variety of biological sample matrices, analysed using a number of mass spectrometr ...
Download / Learn more Package Citations See dependency  
predictoR  
Predictive Data Analysis System
Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes ...
Download / Learn more Package Citations See dependency  
sgof  
Multiple Hypothesis Testing
Seven different methods for multiple testing problems. The SGoF-type methods (see for example, Carva ...
Download / Learn more Package Citations See dependency  
Bolstad2  
Bolstad Functions
A set of R functions and data sets for the book "Understanding Computational Bayesian Statistics." T ...
Download / Learn more Package Citations See dependency  

23,630

R Packages

204,513

Dependencies

64,101

Author Associations

23,581

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA