Other packages > Find by keyword >

survex  

Explainable Machine Learning in Survival Analysis
View on CRAN: Click here


Download and install survex package within the R console
Install from CRAN:
install.packages("survex")

Install from Github:
library("remotes")
install_github("cran/survex")

Install by package version:
library("remotes")
install_version("survex", "1.2.0")



Attach the package and use:
library("survex")
Maintained by
Mikołaj Spytek
[Scholar Profile | Author Map]
First Published: 2022-09-05
Latest Update: 2023-09-06
Description:
Survival analysis models are commonly used in medicine and other areas. Many of them are too complex to be interpreted by human. Exploration and explanation is needed, but standard methods do not give a broad enough picture. 'survex' provides easy-to-apply methods for explaining survival models, both complex black-boxes and simpler statistical models. They include methods specific to survival analysis such as SurvSHAP(t) introduced in Krzyzinski et al., (2023) <doi:10.1016/j.knosys.2022.110234>, SurvLIME described in Kovalev et al., (2020) <doi:10.1016/j.knosys.2020.106164> as well as extensions of existing ones described in Biecek et al., (2021) <doi:10.1201/9780429027192>.
How to cite:
Mikołaj Spytek (2022). survex: Explainable Machine Learning in Survival Analysis. R package version 1.2.0, https://cran.r-project.org/web/packages/survex. Accessed 31 Mar. 2025.
Previous versions and publish date:
0.1.1 (2022-09-05 10:00), 0.2.2 (2022-12-01 01:20), 1.0.0 (2023-03-20 20:30), 1.1.3 (2023-09-06 03:20)
Other packages that cited survex R package
View survex citation profile
Other R packages that survex depends, imports, suggests or enhances
Complete documentation for survex
Functions, R codes and Examples using the survex R package
Some associated functions: brier_score . c_index . cd_auc . cumulative_hazard_to_survival . explain_survival . extract_predict_survshap . integrated_brier_score . integrated_cd_auc . loss_adapt_mlr3proba . loss_integrate . loss_one_minus_c_index . loss_one_minus_cd_auc . loss_one_minus_integrated_cd_auc . model_diagnostics.surv_explainer . model_parts.surv_explainer . model_performance.surv_explainer . model_profile.surv_explainer . model_profile_2d.surv_explainer . model_survshap.surv_explainer . plot.aggregated_surv_shap . plot.model_diagnostics_survival . plot.model_parts_survival . plot.model_performance_survival . plot.model_profile_2d_survival . plot.model_profile_survival . plot.predict_parts_survival . plot.predict_profile_survival . plot.surv_feature_importance . plot.surv_lime . plot.surv_model_performance . plot.surv_model_performance_rocs . plot.surv_shap . predict.surv_explainer . predict_parts.surv_explainer . predict_profile.surv_explainer . risk_from_chf . surv_ceteris_paribus . surv_feature_importance . surv_integrated_feature_importance . surv_lime . surv_model_info . surv_model_performance . surv_shap . survival_to_cumulative_hazard . theme_survex . transform_to_stepfunction . 
Some associated R codes: explain.R . metrics.R . misc_set_theme_survex.R . model_diagnostics.R . model_info.R . model_parts.R . model_performance.R . model_profile.R . model_profile_2d.R . model_survshap.R . plot_model_diagnostics_survival.R . plot_model_parts_survival.R . plot_model_performance_survival.R . plot_model_profile_2d.R . plot_model_profile_survival.R . plot_predict_parts_survival.R . plot_predict_profile_survival.R . plot_surv_ceteris_paribus.R . plot_surv_feature_importance.R . plot_surv_lime.R . plot_surv_model_performance.R . plot_surv_model_performance_rocs.R . plot_surv_shap.R . predict_parts.R . predict_profile.R . predict_surv_explainer.R . print.R . surv_ceteris_paribus.R . surv_feature_importance.R . surv_integrated_feature_importance.R . surv_lime.R . surv_model_performance.R . surv_model_profiles.R . surv_shap.R . utils.R .  Full survex package functions and examples
Downloads during the last 30 days
03/0103/0203/0303/0403/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/30Downloads for survex510152025303540TrendBars

Today's Hot Picks in Authors and Packages

bodycomp  
Percent Body Fat Values Using Anthropometric Prediction Equations
Skinfold measurements is one of the most popular and practical methods for estimating percent body f ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
tclust  
Robust Trimmed Clustering
Provides functions for robust trimmed clustering. The methods are described in Garcia-Escudero (200 ...
Download / Learn more Package Citations See dependency  
popbio  
Construction and Analysis of Matrix Population Models
Construct and analyze projection matrix models from a demography study of marked individuals classif ...
Download / Learn more Package Citations See dependency  
whitebox  
'WhiteboxTools' R Frontend
An R frontend for the 'WhiteboxTools' library, which is an advanced geospatial data analysis platfor ...
Download / Learn more Package Citations See dependency  
equivUMP  
Uniformly Most Powerful Invariant Tests of Equivalence
Implementation of uniformly most powerful invariant equivalence tests for one- and two-sample probl ...
Download / Learn more Package Citations See dependency  

23,842

R Packages

207,311

Dependencies

64,420

Author Associations

23,781

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA