Other packages > Find by keyword >

spatialRF  

Easy Spatial Modeling with Random Forest
View on CRAN: Click here


Download and install spatialRF package within the R console
Install from CRAN:
install.packages("spatialRF")

Install from Github:
library("remotes")
install_github("cran/spatialRF")

Install by package version:
library("remotes")
install_version("spatialRF", "1.1.4")



Attach the package and use:
library("spatialRF")
Maintained by
Blas M. Benito
[Scholar Profile | Author Map]
First Published: 2021-09-23
Latest Update: 2022-08-19
Description:
Automatic generation and selection of spatial predictors for spatial regression with Random Forest. Spatial predictors are surrogates of variables driving the spatial structure of a response variable. The package offers two methods to generate spatial predictors from a distance matrix among training cases: 1) Moran's Eigenvector Maps (MEMs; Dray, Legendre, and Peres-Neto 2006 <doi:10.1016/j.ecolmodel.2006.02.015>): computed as the eigenvectors of a weighted matrix of distances; 2) RFsp (Hengl et al. <doi:10.7717/peerj.5518>): columns of the distance matrix used as spatial predictors. Spatial predictors help minimize the spatial autocorrelation of the model residuals and facilitate an honest assessment of the importance scores of the non-spatial predictors. Additionally, functions to reduce multicollinearity, identify relevant variable interactions, tune random forest hyperparameters, assess model transferability via spatial cross-validation, and explore model results via partial dependence curves and interaction surfaces are included in the package. The modelling functions are built around the highly efficient 'ranger' package (Wright and Ziegler 2017 <doi:10.18637/jss.v077.i01>).
How to cite:
Blas M. Benito (2021). spatialRF: Easy Spatial Modeling with Random Forest. R package version 1.1.4, https://cran.r-project.org/web/packages/spatialRF. Accessed 12 Apr. 2025.
Previous versions and publish date:
1.1.3 (2021-09-23 10:30)
Other packages that cited spatialRF R package
View spatialRF citation profile
Other R packages that spatialRF depends, imports, suggests or enhances
Complete documentation for spatialRF
Functions, R codes and Examples using the spatialRF R package
Some associated functions: auc . auto_cor . auto_vif . beowulf_cluster . case_weights . default_distance_thresholds . distance_matrix . double_center_distance_matrix . filter_spatial_predictors . get_evaluation . get_importance . get_importance_local . get_moran . get_performance . get_predictions . get_residuals . get_response_curves . get_spatial_predictors . is_binary . make_spatial_fold . make_spatial_folds . mem . mem_multithreshold . moran . moran_multithreshold . normality . objects_size . optimization_function . pca . pca_multithreshold . plant_richness_df . plot_evaluation . plot_importance . plot_moran . plot_optimization . plot_residuals_diagnostics . plot_response_curves . plot_response_surface . plot_training_df . plot_training_df_moran . plot_tuning . prepare_importance_spatial . print . print_evaluation . print_importance . print_moran . print_performance . rank_spatial_predictors . rescale_vector . residuals_diagnostics . rf . rf_compare . rf_evaluate . rf_importance . rf_repeat . rf_spatial . rf_tuning . root_mean_squared_error . select_spatial_predictors_recursive . select_spatial_predictors_sequential . standard_error . statistical_mode . the_feature_engineer . thinning . thinning_til_n . vif . weights_from_distance_matrix . 
Some associated R codes: auc.R . auto_cor.R . auto_vif.R . beowulf_cluster.R . case_weights.R . default_distance_thresholds.R . distance_matrix.R . double_center_distance_matrix.R . filter_spatial_predictors.R . get_evaluation.R . get_importance.R . get_importance_local.R . get_moran.R . get_performance.R . get_predictions.R . get_residuals.R . get_response_curves.R . get_spatial_predictors.R . is_binary.R . make_spatial_fold.R . make_spatial_folds.R . mem.R . mem_multithreshold.R . moran.R . moran_multithreshold.R . objects_size.R . optimization_function.R . pca.R . pca_multithreshold.R . plant_richness_df.R . plot_evaluation.R . plot_importance.R . plot_moran.R . plot_optimization.R . plot_residuals_diagnostics.R . plot_response_curves.R . plot_response_surface.R . plot_training_df.R . plot_training_df_moran.R . plot_tuning.R . prepare_importance_spatial.R . print.R . print_evaluation.R . print_importance.R . print_moran.R . print_performance.R . rank_spatial_predictors.R . rescale_vector.R . residuals_diagnostics.R . residuals_test.R . rf.R . rf_compare.R . rf_evaluate.R . rf_importance.R . rf_repeat.R . rf_spatial.R . rf_tuning.R . root_mean_squared_error.R . select_spatial_predictors_recursive.R . select_spatial_predictors_sequential.R . standard_error.R . statistical_mode.R . the_feature_engineer.R . thinning.R . thinning_til_n.R . vif.R . weights_from_distance_matrix.R .  Full spatialRF package functions and examples
Downloads during the last 30 days
03/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/11Downloads for spatialRF024681012141618202224TrendBars

Today's Hot Picks in Authors and Packages

nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
oysteR  
Scans R Projects for Vulnerable Third Party Dependencies
Collects a list of your third party R packages, and scans them with the 'OSS' Index provided by 'So ...
Download / Learn more Package Citations See dependency  
pampe  
Implementation of the Panel Data Approach Method for Program Evaluation
Implements the Panel Data Approach Method for program evaluation as developed in Hsiao, Ching and Ki ...
Download / Learn more Package Citations See dependency  
dials  
Tools for Creating Tuning Parameter Values
Many models contain tuning parameters (i.e. parameters that cannot be directly estimated from the d ...
Download / Learn more Package Citations See dependency  
sparseBC  
Sparse Biclustering of Transposable Data
Implements the sparse biclustering proposal of Tan and Witten (2014), Sparse biclustering of transpo ...
Download / Learn more Package Citations See dependency  
modeest  
Mode Estimation
Provides estimators of the mode of univariate data or univariate distributions. ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA