R package citation, R package reverse dependencies, R package scholars, install an r package from GitHub hy is package acceptance pending why is package undeliverable amazon why is package on hold dhl tour packages why in r package r and r package full form why is r free why r is bad which r package to install which r package has which r package which r package version which r package readxl which r package ggplot which r package fread which r package license where is package.json where is package-lock.json where is package.swift where is package explorer in eclipse where is package where is package manager unity where is package installer android where is package manager console in visual studio who r package which r package to install which r package version who is package who is package deal who is package design r and r package full form r and r package meaning what r package has what package r what is package in java what is package what is package-lock.json what is package in python what is package.json what is package installer do r package can't install r packages r can't find package r can't load package can't load xlsx package r can't install psych package r can't install sf package r Write if else in NONMEM pk pd
sglOptim
View on CRAN: Click
here
Download and install sglOptim package within the R console
Install from CRAN:
install.packages("sglOptim")
Install from Github:
library("remotes")
install_github("cran/sglOptim")
Install by package version:
library("remotes")
install_version("sglOptim", "1.3.8")
Attach the package and use:
library("sglOptim")
Maintained by
Niels Richard Hansen
[Scholar Profile | Author Map]
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2013-12-08
Latest Update: 2024-01-12
Description:
Fast generic solver for sparse group lasso optimization
problems. The loss (objective) function must be defined in a
C++ module. The optimization problem is solved using a
coordinate gradient descent algorithm. Convergence of the
algorithm is established (see reference) and the algorithm is
applicable to a broad class of loss functions. Use of parallel
computing for cross validation and subsampling is supported
through the 'foreach' and 'doParallel' packages. Development
version is on GitHub, please report package issues on GitHub.
How to cite:
Niels Richard Hansen (2013). sglOptim: Generic Sparse Group Lasso Solver. R package version 1.3.8, https://cran.r-project.org/web/packages/sglOptim. Accessed 21 Dec. 2024.
Previous versions and publish date:
0.0.80 (2013-12-08 20:33), 0.0.81 (2014-01-24 12:30), 0.0.82 (2014-02-19 13:44), 0.0.90 (2014-02-22 15:00), 0.0.91 (2014-02-23 22:05), 0.0.100 (2014-03-05 21:16), 0.0.105 (2014-03-10 22:20), 1.0.122.0 (2014-03-24 06:44), 1.0.122.1 (2014-11-04 20:11), 1.2.0 (2015-09-19 22:46), 1.2.2 (2016-09-10 19:17), 1.3.0 (2016-09-28 17:10), 1.3.5 (2016-12-29 01:09), 1.3.6 (2017-04-02 19:41), 1.3.7 (2018-10-21 09:30), 1.3.8 (2019-05-08 00:11)
Other packages that cited sglOptim R package
View sglOptim citation profile
Other R packages that sglOptim depends,
imports, suggests or enhances
Functions, R codes and Examples using
the sglOptim R package
Some associated functions: Err . Err.sgl . add_data . add_data.sgldata . best_model . best_model.sgl . coef.sgl . compute_error . create.sgldata . element_class . features . features.sgl . features_stat . features_stat.sgl . get_coef . linear_test_block_diagonal_sgl_fit_R . linear_test_block_diagonal_sgl_lambda_R . linear_test_block_diagonal_sgl_predict_R . linear_test_block_diagonal_sgl_subsampling_R . linear_test_block_diagonal_sgl_test_R . linear_test_block_diagonal_spx_sgl_fit_R . linear_test_block_diagonal_spx_sgl_lambda_R . linear_test_block_diagonal_spx_sgl_predict_R . linear_test_block_diagonal_spx_sgl_subsampling_R . linear_test_block_diagonal_spx_sgl_test_R . linear_test_block_diagonal_spx_spy_sgl_fit_R . linear_test_block_diagonal_spx_spy_sgl_lambda_R . linear_test_block_diagonal_spx_spy_sgl_predict_R . linear_test_block_diagonal_spx_spy_sgl_subsampling_R . linear_test_block_diagonal_spx_spy_sgl_test_R . linear_test_block_diagonal_spy_sgl_fit_R . linear_test_block_diagonal_spy_sgl_lambda_R . linear_test_block_diagonal_spy_sgl_predict_R . linear_test_block_diagonal_spy_sgl_subsampling_R . linear_test_block_diagonal_spy_sgl_test_R . linear_test_diagonal_error_w_sgl_fit_R . linear_test_diagonal_error_w_sgl_lambda_R . linear_test_diagonal_error_w_sgl_test_R . linear_test_diagonal_w_sgl_fit_R . linear_test_diagonal_w_sgl_lambda_R . linear_test_diagonal_w_sgl_predict_R . linear_test_diagonal_w_sgl_subsampling_R . linear_test_diagonal_w_sgl_test_R . linear_test_diagonal_w_spx_sgl_fit_R . linear_test_diagonal_w_spx_sgl_lambda_R . linear_test_diagonal_w_spx_sgl_predict_R . linear_test_diagonal_w_spx_sgl_subsampling_R . linear_test_diagonal_w_spx_sgl_test_R . linear_test_diagonal_w_spx_spy_sgl_fit_R . linear_test_diagonal_w_spx_spy_sgl_lambda_R . linear_test_diagonal_w_spx_spy_sgl_predict_R . linear_test_diagonal_w_spx_spy_sgl_subsampling_R . linear_test_diagonal_w_spx_spy_sgl_test_R . linear_test_diagonal_w_spy_sgl_fit_R . linear_test_diagonal_w_spy_sgl_lambda_R . linear_test_diagonal_w_spy_sgl_predict_R . linear_test_diagonal_w_spy_sgl_subsampling_R . linear_test_diagonal_w_spy_sgl_test_R . linear_test_full_sgl_fit_R . linear_test_full_sgl_lambda_R . linear_test_full_sgl_predict_R . linear_test_full_sgl_subsampling_R . linear_test_full_sgl_test_R . linear_test_full_spx_sgl_fit_R . linear_test_full_spx_sgl_lambda_R . linear_test_full_spx_sgl_predict_R . linear_test_full_spx_sgl_subsampling_R . linear_test_full_spx_sgl_test_R . linear_test_full_spx_spy_sgl_fit_R . linear_test_full_spx_spy_sgl_lambda_R . linear_test_full_spx_spy_sgl_predict_R . linear_test_full_spx_spy_sgl_subsampling_R . linear_test_full_spx_spy_sgl_test_R . linear_test_full_spy_sgl_fit_R . linear_test_full_spy_sgl_lambda_R . linear_test_full_spy_sgl_predict_R . linear_test_full_spy_sgl_subsampling_R . linear_test_full_spy_sgl_test_R . linear_test_identity_sgl_fit_R . linear_test_identity_sgl_lambda_R . linear_test_identity_sgl_predict_R . linear_test_identity_sgl_subsampling_R . linear_test_identity_sgl_test_R . linear_test_identity_spx_sgl_fit_R . linear_test_identity_spx_sgl_lambda_R . linear_test_identity_spx_sgl_predict_R . linear_test_identity_spx_sgl_subsampling_R . linear_test_identity_spx_sgl_test_R . linear_test_identity_spx_spy_sgl_fit_R . linear_test_identity_spx_spy_sgl_lambda_R . linear_test_identity_spx_spy_sgl_predict_R . linear_test_identity_spx_spy_sgl_subsampling_R . linear_test_identity_spx_spy_sgl_test_R . linear_test_identity_spy_sgl_fit_R . linear_test_identity_spy_sgl_lambda_R . linear_test_identity_spy_sgl_predict_R . linear_test_identity_spy_sgl_subsampling_R . linear_test_identity_spy_sgl_test_R . models . models.sgl . nmod . nmod.sgl . parameters . parameters.sgl . parameters_stat . parameters_stat.sgl . prepare.args . prepare.args.sgldata . prepare_data . print_with_metric_prefix . rearrange . rearrange.sgldata . sgl.algorithm.config . sgl.c.config . sgl.standard.config . sglOptim . sgl_cv . sgl_fit . sgl_lambda_sequence . sgl_predict . sgl_print . sgl_subsampling . sgl_test . sparseMatrix_from_C_format . sparseMatrix_to_C_format . subsample . subsample.sgldata . test.data . test_rtools . transpose_response_elements .
Some associated R codes: lambda_sequence.R . only_for_testing.R . prepare_args.R . response_formatter.R . rtools_test.R . sglOptim.R . sgl_config.R . sgl_cv.R . sgl_error.R . sgl_fit.R . sgl_navigate.R . sgl_predict.R . sgl_subsampling.R . sgl_test.R . startup.R . Full sglOptim package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by
helping add
Reviews / comments / questions /suggestions ↴↴↴
Today's Hot Picks in Authors and Packages
helda
The main focus is on preprocessing and data visualization of machine learning models performances.So ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Simon Corde (view profile)
r2resize
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Obinna Obianom (view profile)
SEIRfansy
Extended Susceptible-Exposed-Infected-Recovery Model for
handling high false negative rate and symp ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Michael Kleinsasser (view profile)
condGEE
Solves for the mean parameters, the variance parameter, and their asymptotic variance in a condition ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: David Clement (view profile)
CIFsmry
Estimate of cumulative incidence function in two samples. Provide weighted summary statistics based ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Jianing Li (view profile)
batteryreduction
Battery reduction is a method used in data reduction. It uses Gram-Schmidt orthogonal rotations to f ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Chunqiao Luo (view profile)