Other packages > Find by keyword >

seqHMM  

Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series
View on CRAN: Click here


Download and install seqHMM package within the R console
Install from CRAN:
install.packages("seqHMM")

Install from Github:
library("remotes")
install_github("cran/seqHMM")

Install by package version:
library("remotes")
install_version("seqHMM", "1.2.6")



Attach the package and use:
library("seqHMM")
Maintained by
Jouni Helske
[Scholar Profile | Author Map]
First Published: 2015-12-19
Latest Update: 2023-07-06
Description:
Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and hidden Markov models. Models are estimated using maximum likelihood via the EM algorithm and/or direct numerical maximization with analytical gradients. All main algorithms are written in C++ with support for parallel computation. Documentation is available via several vignettes in this page, and the paper by Helske and Helske (2019, ).
How to cite:
Jouni Helske (2015). seqHMM: Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series. R package version 1.2.6, https://cran.r-project.org/web/packages/seqHMM. Accessed 22 Apr. 2025.
Previous versions and publish date:
1.0.2-1 (2015-12-19 16:15), 1.0.3-1 (2015-12-30 12:10), 1.0.3 (2015-12-23 10:15), 1.0.4 (2016-01-14 13:12), 1.0.5 (2016-02-24 12:07), 1.0.6 (2016-08-01 17:29), 1.0.7 (2017-04-04 19:17), 1.0.8-1 (2018-05-10 14:17), 1.0.8 (2017-11-08 17:59), 1.0.9 (2018-11-06 16:30), 1.0.10 (2019-01-26 06:40), 1.0.11 (2019-04-09 17:22), 1.0.12 (2019-04-11 13:52), 1.0.13 (2019-06-17 15:50), 1.0.14 (2019-10-22 18:50), 1.1.0 (2021-06-18 20:10), 1.1.1 (2021-08-13 10:00), 1.2.0 (2021-10-18 09:40), 1.2.1-1 (2022-05-25 13:00), 1.2.2 (2022-11-30 15:40), 1.2.3 (2022-12-12 14:50), 1.2.4 (2023-01-09 12:20), 1.2.5 (2023-06-12 10:00)
Other packages that cited seqHMM R package
View seqHMM citation profile
Other R packages that seqHMM depends, imports, suggests or enhances
Complete documentation for seqHMM
Functions, R codes and Examples using the seqHMM R package
Some associated functions: TraMineR_imports . biofam3c . build_hmm . build_lcm . build_mhmm . build_mm . build_mmm . cluster_names-set . cluster_names . colorpalette . estimate_coef . fit_model . forward_backward . gridplot . hidden_paths . hmm_biofam . hmm_mvad . logLik.hmm . logLik.mhmm . mc_to_sc . mc_to_sc_data . mhmm_biofam . mhmm_mvad . mssplot . plot.hmm . plot.mhmm . plot.ssp . plot_colors . posterior_probs . print . separate_mhmm . seqHMM-deprecated . seqHMM . simulate_hmm . simulate_mhmm . simulate_pars . ssp . ssplot . state_names-set . state_names . summary.mhmm . trim_model . vcov.mhmm . 
Some associated R codes: HMMplot.R . RcppExports.R . SSPlotter.R . biofam3c.R . build_hmm.R . build_lcm.R . build_mhmm.R . build_mm.R . build_mmm.R . check_deprecated_args.R . cluster_names.R . colorpalette.R . combine_models.R . estimate_coef.R . fit_model.R . forwardBackward.R . gridplot.R . hidden_paths.R . hmm_biofam.R . hmm_mvad.R . import_seqdef.R . isColor.R . is_multichannel.R . logLik.hmm.R . logLik.mhmm.R . mHMMplotgrid.R . mHMMplotint.R . mc_to_sc.R . mc_to_sc_data.R . mhmm_biofam.R . mhmm_mvad.R . mssplot.R . plot.hmm.R . plot.mhmm.R . plot.ssp.R . plot_colors.R . posterior_probs.R . print.hmm.R . print.mhmm.R . print.summary.mhmm.R . separate_mhmm.R . seqHMM-deprecated.R . seqHMM-package.R . simulate_hmm.R . simulate_mhmm.R . simulate_pars.R . spread_models.R . ssp.R . ssplot.R . ssplotM.R . state_names.R . summary.mhmm.R . trim_hmm.R . vcov.mhmm.R . zzz.R .  Full seqHMM package functions and examples
Downloads during the last 30 days
03/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/1804/1904/2004/21Downloads for seqHMM05101520253035404550TrendBars

Today's Hot Picks in Authors and Packages

ino  
Initialization of Numerical Optimization
Analysis of the initialization for numerical optimization of real-valued functions, including likel ...
Download / Learn more Package Citations See dependency  
Qest  
Quantile-Based Estimator
Quantile-based estimators (Q-estimators) can be used to fit any parametric distribution, using its q ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
GWPR.light  
Geographically Weighted Panel Regression
Geographically weighted panel regression is grounded in a branch of spatial statistics. Using geogra ...
Download / Learn more Package Citations See dependency  
phylosamp  
Sample Size Calculations for Molecular and Phylogenetic Studies
Implements novel tools for estimating sample sizes needed for phylogenetic studies, including studi ...
Download / Learn more Package Citations See dependency  
optimStrat  
Choosing the Sample Strategy
Intended to assist in the choice of the sampling strategy to implement in a survey. ...
Download / Learn more Package Citations See dependency  

24,098

R Packages

207,311

Dependencies

65,069

Author Associations

24,099

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA