Other packages > Find by keyword >

seqHMM  

Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series
View on CRAN: Click here


Download and install seqHMM package within the R console
Install from CRAN:
install.packages("seqHMM")

Install from Github:
library("remotes")
install_github("cran/seqHMM")

Install by package version:
library("remotes")
install_version("seqHMM", "1.2.6")



Attach the package and use:
library("seqHMM")
Maintained by
Jouni Helske
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2015-12-19
Latest Update: 2023-07-06
Description:
Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and hidden Markov models. Models are estimated using maximum likelihood via the EM algorithm and/or direct numerical maximization with analytical gradients. All main algorithms are written in C++ with support for parallel computation. Documentation is available via several vignettes in this page, and the paper by Helske and Helske (2019, ).
How to cite:
Jouni Helske (2015). seqHMM: Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series. R package version 1.2.6, https://cran.r-project.org/web/packages/seqHMM. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.0.2-1 (2015-12-19 16:15), 1.0.3-1 (2015-12-30 12:10), 1.0.3 (2015-12-23 10:15), 1.0.4 (2016-01-14 13:12), 1.0.5 (2016-02-24 12:07), 1.0.6 (2016-08-01 17:29), 1.0.7 (2017-04-04 19:17), 1.0.8-1 (2018-05-10 14:17), 1.0.8 (2017-11-08 17:59), 1.0.9 (2018-11-06 16:30), 1.0.10 (2019-01-26 06:40), 1.0.11 (2019-04-09 17:22), 1.0.12 (2019-04-11 13:52), 1.0.13 (2019-06-17 15:50), 1.0.14 (2019-10-22 18:50), 1.1.0 (2021-06-18 20:10), 1.1.1 (2021-08-13 10:00), 1.2.0 (2021-10-18 09:40), 1.2.1-1 (2022-05-25 13:00), 1.2.2 (2022-11-30 15:40), 1.2.3 (2022-12-12 14:50), 1.2.4 (2023-01-09 12:20), 1.2.5 (2023-06-12 10:00)
Other packages that cited seqHMM R package
View seqHMM citation profile
Other R packages that seqHMM depends, imports, suggests or enhances
Complete documentation for seqHMM
Functions, R codes and Examples using the seqHMM R package
Some associated functions: TraMineR_imports . biofam3c . build_hmm . build_lcm . build_mhmm . build_mm . build_mmm . cluster_names-set . cluster_names . colorpalette . estimate_coef . fit_model . forward_backward . gridplot . hidden_paths . hmm_biofam . hmm_mvad . logLik.hmm . logLik.mhmm . mc_to_sc . mc_to_sc_data . mhmm_biofam . mhmm_mvad . mssplot . plot.hmm . plot.mhmm . plot.ssp . plot_colors . posterior_probs . print . separate_mhmm . seqHMM-deprecated . seqHMM . simulate_hmm . simulate_mhmm . simulate_pars . ssp . ssplot . state_names-set . state_names . summary.mhmm . trim_model . vcov.mhmm . 
Some associated R codes: HMMplot.R . RcppExports.R . SSPlotter.R . biofam3c.R . build_hmm.R . build_lcm.R . build_mhmm.R . build_mm.R . build_mmm.R . check_deprecated_args.R . cluster_names.R . colorpalette.R . combine_models.R . estimate_coef.R . fit_model.R . forwardBackward.R . gridplot.R . hidden_paths.R . hmm_biofam.R . hmm_mvad.R . import_seqdef.R . isColor.R . is_multichannel.R . logLik.hmm.R . logLik.mhmm.R . mHMMplotgrid.R . mHMMplotint.R . mc_to_sc.R . mc_to_sc_data.R . mhmm_biofam.R . mhmm_mvad.R . mssplot.R . plot.hmm.R . plot.mhmm.R . plot.ssp.R . plot_colors.R . posterior_probs.R . print.hmm.R . print.mhmm.R . print.summary.mhmm.R . separate_mhmm.R . seqHMM-deprecated.R . seqHMM-package.R . simulate_hmm.R . simulate_mhmm.R . simulate_pars.R . spread_models.R . ssp.R . ssplot.R . ssplotM.R . state_names.R . summary.mhmm.R . trim_hmm.R . vcov.mhmm.R . zzz.R .  Full seqHMM package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA