Other packages > Find by keyword >

segclust2d  

Bivariate Segmentation/Clustering Methods and Tools
View on CRAN: Click here


Download and install segclust2d package within the R console
Install from CRAN:
install.packages("segclust2d")

Install from Github:
library("remotes")
install_github("cran/segclust2d")

Install by package version:
library("remotes")
install_version("segclust2d", "0.3.3")



Attach the package and use:
library("segclust2d")
Maintained by
Remi Patin
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-02-23
Latest Update: 2023-08-21
Description:
Provides two methods for segmentation and joint segmentation/clustering of bivariate time-series. Originally intended for ecological segmentation (home-range and behavioural modes) but easily applied on other series, the package also provides tools for analysing outputs from R packages 'moveHMM' and 'marcher'. The segmentation method is a bivariate extension of Lavielle's method available in 'adehabitatLT' (Lavielle, 1999 and 2005 ). This method rely on dynamic programming for efficient segmentation. The segmentation/clustering method alternates steps of dynamic programming with an Expectation-Maximization algorithm. This is an extension of Picard et al (2007) method (formerly available in 'cghseg' package) to the bivariate case. The method is fully described in Patin et al (2018) .
How to cite:
Remi Patin (2018). segclust2d: Bivariate Segmentation/Clustering Methods and Tools. R package version 0.3.3, https://cran.r-project.org/web/packages/segclust2d. Accessed 18 Feb. 2025.
Previous versions and publish date:
0.1.0 (2018-02-23 20:25), 0.2.0 (2019-02-27 18:00), 0.3.0 (2021-10-11 10:10), 0.3.1 (2023-08-21 10:50)
Other packages that cited segclust2d R package
View segclust2d citation profile
Other R packages that segclust2d depends, imports, suggests or enhances
Complete documentation for segclust2d
Functions, R codes and Examples using the segclust2d R package
Some associated functions: DynProg . DynProg_algo_cpp . EM.algo_simultanee . EM.algo_simultanee_Cpp . EM.init_simultanee . Estep_simultanee . Gmean_simultanee . Gmixt_algo_cpp . Gmixt_simultanee . Gmixt_simultanee_fullcpp . Mstep_simultanee . Mstep_simultanee_cpp . add_covariates . angular_speed . apply_rowSums . apply_subsampling . argcheck_Kmax . argcheck_diag.var . argcheck_lmin . argcheck_ncluster . argcheck_order.var . argcheck_ordering . argcheck_scale.variable . argcheck_seg.var . argcheck_segclust . argcheck_segmentation . argcheck_type_coord . arma_repmat . augment . bisig_plot . calc_BIC . calc_dist . calc_speed . calc_stat_states . check_repetition . choose_kmax . chooseseg_lavielle . colsums_sapply . cumsum_cpp . find_mu_sd . hybrid_simultanee . initialisePhi . likelihood . logdens_simultanee . map_segm . matrixRupt . neighborsbis . plot_segm . plot_states . prep_segm . prep_segm_HMM . prep_segm_shiftfit . prepare_HMM . prepare_shiftfit . relabel_states . repmat . ruptAsMat . segclust . segclust2d . segclust_internal . segmap_list . segmentation-class . segmentation . simulmode . simulshift . spatial_angle . stat_segm . stat_segm_HMM . stat_segm_shiftfit . subsample_rename . test_data . wrap_dynprog_cpp . 
Some associated R codes: Ex_data.R . RcppExports.R . SegTraj_EM_cpp.R . augment_generic.R . choose_Kmax.R . function_checks.R . function_map_plot.R . function_prepare.R . function_series_plot.R . function_states_plot.R . likelihood_generic.R . prepare_HMM.R . prepare_covariates.R . prepare_shiftfit.R . segTraj_DynProg.R . segTraj_EM.algo_simultanee.R . segTraj_EM.init_simultanee.R . segTraj_Estep_simultanee.R . segTraj_Gmean_simultanee.R . segTraj_Gmixt_simultanee.R . segTraj_Mstep_simultanee.R . segTraj_hybrid_simultanee.R . segTraj_initialisePhi.R . segTraj_logdens_simultanee.R . segTraj_neighborsbis.R . segTraj_plot_simultanee.R . segTraj_repmat.R . segTraj_ruptAsMat.R . segclust.R . segclust2d.R . segmentation.R . segmentation_class.R . test_functions.R . tools.R .  Full segclust2d package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

RobustBayesianCopas  
Robust Bayesian Copas Selection Model
Fits the robust Bayesian Copas (RBC) selection model of Bai et al. (2020) for cor ...
Download / Learn more Package Citations See dependency  
fclust  
Fuzzy Clustering
Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visuali ...
Download / Learn more Package Citations See dependency  
MOSS  
Multi-Omic Integration via Sparse Singular Value Decomposition
High dimensionality, noise and heterogeneity among samples and features challenge the omic integrat ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
OptGS  
Near-Optimal Group-Sequential Designs for Continuous Outcomes
Optimal group-sequential designs minimise some function of the expected and maximum sample size whil ...
Download / Learn more Package Citations See dependency  
readxlsb  
Read 'Excel' Binary (.xlsb) Workbooks
Import data from 'Excel' binary (.xlsb) workbooks into R. ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA