Other packages > Find by keyword >

scCustomize  

Custom Visualizations & Functions for Streamlined Analyses of Single Cell Sequencing
View on CRAN: Click here


Download and install scCustomize package within the R console
Install from CRAN:
install.packages("scCustomize")

Install from Github:
library("remotes")
install_github("cran/scCustomize")

Install by package version:
library("remotes")
install_version("scCustomize", "3.0.1")



Attach the package and use:
library("scCustomize")
Maintained by
Samuel Marsh
[Scholar Profile | Author Map]
First Published: 2022-12-23
Latest Update: 2024-02-28
Description:
Collection of functions created and/or curated to aid in the visualization and analysis of single-cell data using 'R'. 'scCustomize' aims to provide 1) Customized visualizations for aid in ease of use and to create more aesthetic and functional visuals. 2) Improve speed/reproducibility of common tasks/pieces of code in scRNA-seq analysis with a single or group of functions. For citation please use: Marsh SE (2021) "Custom Visualizations & Functions for Streamlined Analyses of Single Cell Sequencing" RRID:SCR_024675.
How to cite:
Samuel Marsh (2022). scCustomize: Custom Visualizations & Functions for Streamlined Analyses of Single Cell Sequencing. R package version 3.0.1, https://cran.r-project.org/web/packages/scCustomize. Accessed 19 Apr. 2025.
Previous versions and publish date:
1.1.0 (2022-12-23 20:10), 1.1.1 (2023-01-13 16:30), 1.1.2 (2023-07-18 23:50), 1.1.3 (2023-07-19 23:40), 2.0.0 (2023-11-14 06:40), 2.0.1 (2023-11-17 20:00), 2.1.0 (2024-02-23 20:40), 2.1.1 (2024-02-24 10:50), 2.1.2 (2024-02-28 20:40), 3.0.0 (2024-12-05 21:30)
Other packages that cited scCustomize R package
View scCustomize citation profile
Other R packages that scCustomize depends, imports, suggests or enhances
Complete documentation for scCustomize
Functions, R codes and Examples using the scCustomize R package
Some associated functions: Add_CellBender_Diff . Add_Cell_Complexity_LIGER . Add_Cell_Complexity_Seurat . Add_Cell_QC_Metrics . Add_Mito_Ribo_LIGER . Add_Mito_Ribo_Seurat . Add_Pct_Diff . Add_Sample_Meta . Add_Top_Gene_Pct_Seurat . Barcode_Plot . Blank_Theme . Case_Check . CellBender_Diff_Plot . CellBender_Feature_Diff . Cell_Highlight_Plot . Change_Delim_All . Change_Delim_Prefix . Change_Delim_Suffix . CheckMatrix_scCustom . Cluster_Highlight_Plot . Cluster_Stats_All_Samples . Clustered_DotPlot . ColorBlind_Pal . Copy_From_GCP . Copy_To_GCP . Create_10X_H5 . Create_CellBender_Merged_Seurat . Create_Cluster_Annotation_File . Dark2_Pal . DimPlot_All_Samples . DimPlot_LIGER . DimPlot_scCustom . DiscretePalette_scCustomize . DotPlot_scCustom . Extract_Modality . Extract_Sample_Meta . Extract_Top_Markers . FeaturePlot_DualAssay . FeaturePlot_scCustom . FeatureScatter_scCustom . Fetch_Meta . Gene_Present . Hue_Pal . Iterate_Barcode_Rank_Plot . Iterate_Cluster_Highlight_Plot . Iterate_DimPlot_bySample . Iterate_FeaturePlot_scCustom . Iterate_Meta_Highlight_Plot . Iterate_PC_Loading_Plots . Iterate_Plot_Density_Custom . Iterate_Plot_Density_Joint . Iterate_VlnPlot_scCustom . JCO_Four . Liger_to_Seurat . MAD_Stats . Median_Stats . Merge_Seurat_List . Merge_Sparse_Data_All . Merge_Sparse_Multimodal_All . Meta_Highlight_Plot . Meta_Numeric . Meta_Present . Meta_Present_LIGER . Meta_Remove_Seurat . Move_Legend . NavyAndOrange . PC_Plotting . PalettePlot . Percent_Expressing . Plot_Cells_per_Sample . Plot_Density_Custom . Plot_Density_Joint_Only . Plot_Median_Genes . Plot_Median_Mito . Plot_Median_Other . Plot_Median_UMIs . Pull_Cluster_Annotation . Pull_Directory_List . QC_Histogram . QC_Plot_GenevsFeature . QC_Plot_UMIvsFeature . QC_Plot_UMIvsGene . QC_Plots_Combined_Vln . QC_Plots_Complexity . QC_Plots_Feature . QC_Plots_Genes . QC_Plots_Mito . QC_Plots_UMIs . Read10X_GEO . Read10X_Multi_Directory . Read10X_h5_GEO . Read10X_h5_Multi_Directory . Read_CellBender_h5_Mat . Read_CellBender_h5_Multi_Directory . Read_CellBender_h5_Multi_File . Read_GEO_Delim . Read_Metrics_10X . Reduction_Loading_Present . Rename_Clusters . Replace_Suffix . Seq_QC_Plot_Alignment_Combined . Seq_QC_Plot_Antisense . Seq_QC_Plot_Basic_Combined . Seq_QC_Plot_Exonic . Seq_QC_Plot_Genes . Seq_QC_Plot_Genome . Seq_QC_Plot_Intergenic . Seq_QC_Plot_Intronic . Seq_QC_Plot_Number_Cells . Seq_QC_Plot_Reads_in_Cells . Seq_QC_Plot_Reads_per_Cell . Seq_QC_Plot_Saturation . Seq_QC_Plot_Total_Genes . Seq_QC_Plot_Transcriptome . Seq_QC_Plot_UMIs . Setup_scRNAseq_Project . Single_Color_Palette . Split_FeatureScatter . Stacked_VlnPlot . Store_Misc_Info_Seurat . Store_Palette_Seurat . Top_Genes_Factor . UnRotate_X . VariableFeaturePlot_scCustom . Variable_Features_ALL_LIGER . VlnPlot_scCustom . ensembl_mito_id . ensembl_ribo_id . ieg_gene_list . msigdb_qc_gene_list . plotFactors_scCustom . scCustomize-package . scCustomize_Palette . theme_ggprism_mod . viridis_shortcut . 
Some associated R codes: Color_Palettes.R . Data.R . Internal_Utilities.R . LIGER_Plotting.R . LIGER_Utilities.R . Nebulosa_Plotting.R . Object_Utilities.R . Plotting_Utilities.R . QC_Plotting_Seq_10X.R . QC_Plotting_Seurat.R . Read_&_Write_Data.R . Seurat_Iterative_Plotting.R . Seurat_Plotting.R . Statistics.R . Statistics_Plotting.R . Utilities.R . zzz.R .  Full scCustomize package functions and examples
Downloads during the last 30 days
03/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/18Downloads for scCustomize406080100120140160180TrendBars

Today's Hot Picks in Authors and Packages

SDT  
Self-Determination Theory Measures
Functions for self-determination motivation theory (SDT) to compute measures of motivation internal ...
Download / Learn more Package Citations See dependency  
MScombine  
Combine Data from Positive and Negative Ionization Mode Finding Common Entities
Find common entities detected in both positive and negative ionization mode, delete this entity in ...
Download / Learn more Package Citations See dependency  
arsenal  
An Arsenal of 'R' Functions for Large-Scale Statistical Summaries
An Arsenal of 'R' functions for large-scale statistical summaries, which are streamlined to work wi ...
Download / Learn more Package Citations See dependency  
PCGSE  
Principal Component Gene Set Enrichment
Contains logic for computing the statistical association of variable groups, i.e., gene sets, with r ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
signibox  
Statistical Significance Marks on Boxplots
Add significance marks to any R Boxplot, including a given significance niveau. ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

65,069

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA