Other packages > Find by keyword >

sboost  

Machine Learning with AdaBoost on Decision Stumps
View on CRAN: Click here


Download and install sboost package within the R console
Install from CRAN:
install.packages("sboost")

Install from Github:
library("remotes")
install_github("cran/sboost")

Install by package version:
library("remotes")
install_version("sboost", "0.1.2")



Attach the package and use:
library("sboost")
Maintained by
Jadon Wagstaff
[Scholar Profile | Author Map]
First Published: 2018-10-28
Latest Update: 2022-05-26
Description:
Creates classifier for binary outcomes using Adaptive Boosting (AdaBoost) algorithm on decision stumps with a fast C++ implementation. For a description of AdaBoost, see Freund and Schapire (1997) . This type of classifier is nonlinear, but easy to interpret and visualize. Feature vectors may be a combination of continuous (numeric) and categorical (string, factor) elements. Methods for classifier assessment, predictions, and cross-validation also included.
How to cite:
Jadon Wagstaff (2018). sboost: Machine Learning with AdaBoost on Decision Stumps. R package version 0.1.2, https://cran.r-project.org/web/packages/sboost. Accessed 04 Apr. 2025.
Previous versions and publish date:
0.1.0 (2018-10-28 23:40), 0.1.1 (2019-04-08 20:40)
Other packages that cited sboost R package
View sboost citation profile
Other R packages that sboost depends, imports, suggests or enhances
Complete documentation for sboost
Functions, R codes and Examples using the sboost R package
Some associated functions: assess . malware . mushrooms . predict.sboost_classifier . sboost . validate . 
Some associated R codes: RcppExports.R . assess.R . data.R . mean.R . predict.R . process_input.R . process_output.R . regression.R . sboost.R . validate.R .  Full sboost package functions and examples
Downloads during the last 30 days
03/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/03Downloads for sboost0246810121416TrendBars

Today's Hot Picks in Authors and Packages

PakPMICS2014HH  
Multiple Indicator Cluster Survey (MICS) 2014 Household Questionnaire Data for Punjab, Pakistan
Provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2014 Hous ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
metaprotr  
Metaproteomics Post-Processing Analysis
Set of tools for descriptive analysis of metaproteomics data generated from high-throughput mass ...
Download / Learn more Package Citations See dependency  
Rexperigen  
R Interface to Experigen
Provides convenience functions to communicate with an Experigen server: Experigen ( ...
Download / Learn more Package Citations See dependency  
RMixpanel  
API for Mixpanel
Provides an interface to many endpoints of Mixpanel's Data Export, Engage and JQL API. The R functio ...
Download / Learn more Package Citations See dependency  
perryExamples  
Examples for Integrating Prediction Error Estimation into Regression Models
Examples for integrating package 'perry' for prediction error estimation into regression models. ...
Download / Learn more Package Citations See dependency  

23,990

R Packages

207,311

Dependencies

64,809

Author Associations

23,991

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA