Other packages > Find by keyword >

ruta  

Implementation of Unsupervised Neural Architectures
View on CRAN: Click here


Download and install ruta package within the R console
Install from CRAN:
install.packages("ruta")

Install from Github:
library("remotes")
install_github("cran/ruta")

Install by package version:
library("remotes")
install_version("ruta", "1.2.0")



Attach the package and use:
library("ruta")
Maintained by
David Charte
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-05-08
Latest Update: 2023-11-14
Description:
Implementation of several unsupervised neural networks, from building their architecture to their training and evaluation. Available networks are auto-encoders including their main variants: sparse, contractive, denoising, robust and variational, as described in Charte et al. (2018) .
How to cite:
David Charte (2018). ruta: Implementation of Unsupervised Neural Architectures. R package version 1.2.0, https://cran.r-project.org/web/packages/ruta. Accessed 16 Apr. 2025.
Previous versions and publish date:
1.0.2 (2018-05-08 12:09), 1.1.0 (2019-03-18 14:10), 1.2.0 (2023-01-08 16:10)
Other packages that cited ruta R package
View ruta citation profile
Other R packages that ruta depends, imports, suggests or enhances
Functions, R codes and Examples using the ruta R package
Some associated functions: add_weight_decay . apply_filter . as_loss . as_network . autoencode . autoencoder . autoencoder_contractive . autoencoder_denoising . autoencoder_robust . autoencoder_sparse . autoencoder_variational . configure . contraction . conv . correntropy . decode . dense . dropout . encode . encoding_index . evaluate . evaluation_metric . generate . input . is_contractive . is_denoising . is_robust . is_sparse . is_trained . is_variational . join-networks . layer_keras . loss_variational . make_contractive . make_denoising . make_robust . make_sparse . new_autoencoder . new_layer . new_network . noise . noise_cauchy . noise_gaussian . noise_ones . noise_saltpepper . noise_zeros . output . plot.ruta_network . print-methods . reconstruct . save_as . sparsity . sub-.ruta_network . to_keras . to_keras.ruta_autoencoder . to_keras.ruta_filter . to_keras.ruta_layer_input . to_keras.ruta_layer_variational . to_keras.ruta_loss_named . to_keras.ruta_network . to_keras.ruta_sparsity . to_keras.ruta_weight_decay . train.ruta_autoencoder . variational_block . weight_decay . 
Some associated R codes: 00classes.R . autoencoder.R . autoencoder_contractive.R . autoencoder_denoising.R . autoencoder_robust.R . autoencoder_sparse.R . autoencoder_variational.R . autoencoder_weight_decay.R . derivative.R . evaluate.R . filter.R . generics.R . layers.R . loss.R . network.R . network_plot.R . save.R . util.R .  Full ruta package functions and examples
Downloads during the last 30 days
03/1803/1903/2003/2103/2203/2804/0204/0404/0704/0804/1204/13Downloads for ruta0.511.522.533.544.555.566.5TrendBars

Today's Hot Picks in Authors and Packages

apache.sedona  
R Interface for Apache Sedona
R interface for 'Apache Sedona' based on 'sparklyr' (). ...
Download / Learn more Package Citations See dependency  
datadictionary  
Create a Data Dictionary
Creates a data dictionary from any dataframe or tibble in your R environment. You can opt to add va ...
Download / Learn more Package Citations See dependency  
hkclustering  
Ensemble Clustering using K Means and Hierarchical Clustering
Implements an ensemble algorithm for clustering combining a k-means and a hierarchical clustering ap ...
Download / Learn more Package Citations See dependency  
MultiKink  
Estimation and Inference for Multi-Kink Quantile Regression
Estimation and inference for multiple kink quantile regression for longitudinal data and the i.i.d d ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
MM4LMM  
Inference of Linear Mixed Models Through MM Algorithm
The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed mod ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,993

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA