Other packages > Find by keyword >

rnmamod  

Bayesian Network Meta-Analysis with Missing Participants
View on CRAN: Click here


Download and install rnmamod package within the R console
Install from CRAN:
install.packages("rnmamod")

Install from Github:
library("remotes")
install_github("cran/rnmamod")

Install by package version:
library("remotes")
install_version("rnmamod", "0.4.0")



Attach the package and use:
library("rnmamod")
Maintained by
Loukia Spineli
[Scholar Profile | Author Map]
First Published: 2021-11-29
Latest Update: 2022-11-01
Description:
A comprehensive suite of functions to perform and visualise pairwise and network meta-analysis with aggregate binary or continuous missing participant outcome data. The package covers core Bayesian one-stage models implemented in a systematic review with multiple interventions, including fixed-effect and random-effects network meta-analysis, meta-regression, evaluation of the consistency assumption via the node-splitting approach and the unrelated mean effects model, and sensitivity analysis. Missing participant outcome data are addressed in all models of the package. The robustness to primary analysis results can also be investigated using a novel intuitive index. Methods to evaluate the transitivity assumption quantitatively are provided. The package also offers a rich, user-friendly visualisation toolkit that aids in appraising and interpreting the results thoroughly and preparing the manuscript for journal submission. The visualisation tools comprise the network plot, forest plots, panel of diagnostic plots, heatmaps on the extent of missing participant outcome data in the network, league heatmaps on estimation and prediction, rankograms, Bland-Altman plot, leverage plot, deviance scatterplot, heatmap of robustness, barplot of Kullback-Leibler divergence, heatmap of comparison dissimilarities and dendrogram of comparison clustering. The package also allows the user to export the results to an Excel file at the working directory.
How to cite:
Loukia Spineli (2021). rnmamod: Bayesian Network Meta-Analysis with Missing Participants. R package version 0.4.0, https://cran.r-project.org/web/packages/rnmamod. Accessed 05 Apr. 2025.
Previous versions and publish date:
0.1.0 (2021-11-29 21:00), 0.2.0 (2022-04-06 19:40), 0.3.0 (2022-11-01 11:44)
Other packages that cited rnmamod R package
View rnmamod citation profile
Other R packages that rnmamod depends, imports, suggests or enhances
Complete documentation for rnmamod
Functions, R codes and Examples using the rnmamod R package
Some associated functions: balloon_plot . baseline_model . bland_altman_plot . data_preparation . describe_network . forestplot . forestplot_metareg . heatmap_missing_dataset . heatmap_missing_network . heatmap_robustness . heterogeneity_param_prior . improved_ume . intervalplot_panel_ume . kld_barplot . league_heatmap . league_heatmap_pred . league_table_absolute . league_table_absolute_user . leverage_plot . mcmc_diagnostics . metareg_plot . missingness_param_prior . netplot . nma.baker2009 . nma.bottomley2011 . nma.dogliotti2014 . nma.liu2013 . nma.schwingshackl2014 . nma.stowe2011 . nodesplit_plot . pma.hetrick2012 . pma.taylor2004 . prepare_model . prepare_nodesplit . prepare_ume . rankosucra_plot . rnmamod-package . robustness_index . robustness_index_user . run_metareg . run_model . run_nodesplit . run_sensitivity . run_series_meta . run_ume . scatterplot_sucra . scatterplots_dev . series_meta_plot . taylor_continuous . taylor_imor . trans_quality . ume_plot . unrelated_effects_plot . 
Some associated R codes: Basetreat_function.R . KLD.barplot_function.R . NonbaseSweep_function.R . PairXY_function.R . Sweeptreat_function.R . Taylor.IMDoM.IMRoM_function.R . Taylor.IMOR_function.R . UME.plot_function.R . balloon.plot.mod_function.R . baseline.model_function.R . bland_altman.plot_function.R . data.preparation_function.R . datasets.R . describe.network_function.R . effect.measure.name_function.R . forestplot.metareg_function.R . forestplot_function.R . globals.R . heatmap.missing.dataset_function.R . heatmap.missing.network_function.R . heatmap.robustness_function.R . heterogeneity.param.prior_function.R . improved.UME_function.R . intervalplot.panel.UME_function.R . league.heatmap.pred_function.R . league.heatmap_function.R . league.table.absolute.user_function.R . league.table.absolute_function.R . leverage.plot_function.R . mcmc.diagnostics_function.R . metareg.plot_function.R . missingness.param.prior_function.R . network.plot_function.R . nodesplit.plot_function.R . possibleserved.comparisons_function.R . prepare.UME_function.R . prepare.model_function.R . prepare.nodesplit_function.R . quality.transitivity_function.R . rankosucra.plot_function.R . rnmamod.R.R . robustness.index.user_function.R . robustness.index_function.R . run.UME_function.R . run.metareg_function.R . run.model_function.R . run.nodesplit_function.R . run.sensitivity_function.R . run.series.meta_function.R . scatterplot.sucra_function.R . scatterplots.deviance_function.R . series.meta.plot_function.R . unrelated.effects.plot_function.R.R .  Full rnmamod package functions and examples
Downloads during the last 30 days
03/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/03Downloads for rnmamod24681012141618TrendBars

Today's Hot Picks in Authors and Packages

IGST  
Informative Gene Selection Tool
Mining informative genes with certain biological meanings are important for clinical diagnosis of di ...
Download / Learn more Package Citations See dependency  
gllvm  
Generalized Linear Latent Variable Models
Analysis of multivariate data using generalized linear latent variable models (gllvm). Estimation i ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
whitestrap  
White Test and Bootstrapped White Test for Heteroskedasticity
Formal implementation of White test of heteroskedasticity and a bootstrapped version of it, develope ...
Download / Learn more Package Citations See dependency  
deepdive  
Deep Learning for General Purpose
Aims to provide simple intuitive functions to create quick prototypes of artificial neural network o ...
Download / Learn more Package Citations See dependency  
leapp  
Latent Effect Adjustment After Primary Projection
These functions take a gene expression value matrix, a primary covariate vector, an additional know ...
Download / Learn more Package Citations See dependency  

23,990

R Packages

207,311

Dependencies

64,809

Author Associations

23,991

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA