Other packages > Find by keyword >

randomForestSRC  

Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)
View on CRAN: Click here


Download and install randomForestSRC package within the R console
Install from CRAN:
install.packages("randomForestSRC")

Install from Github:
library("remotes")
install_github("cran/randomForestSRC")

Install by package version:
library("remotes")
install_version("randomForestSRC", "3.3.3")



Attach the package and use:
library("randomForestSRC")
Maintained by
Udaya B. Kogalur
[Scholar Profile | Author Map]
First Published: 2012-10-31
Latest Update: 2023-05-23
Description:
Fast OpenMP parallel computing of Breiman's random forests for univariate, multivariate, unsupervised, survival, competing risks, class imbalanced classification and quantile regression. New Mahalanobis splitting for correlated outcomes. Extreme random forests and randomized splitting. Suite of imputation methods for missing data. Fast random forests using subsampling. Confidence regions and standard errors for variable importance. New improved holdout importance. Case-specific importance. Minimal depth variable importance. Visualize trees on your Safari or Google Chrome browser. Anonymous random forests for data privacy.
How to cite:
Udaya B. Kogalur (2012). randomForestSRC: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). R package version 3.3.3, https://cran.r-project.org/web/packages/randomForestSRC. Accessed 16 Apr. 2025.
Previous versions and publish date:
1.0.0 (2012-10-31 17:21), 1.0.1 (2012-11-13 21:42), 1.0.2 (2012-12-07 07:40), 1.1.0 (2013-02-25 20:16), 1.2 (2013-04-30 06:28), 1.3 (2013-07-22 17:23), 1.4 (2013-12-10 23:06), 1.5.0 (2014-05-13 07:54), 1.5.1 (2014-05-16 07:38), 1.5.2 (2014-06-05 06:56), 1.5.3 (2014-06-25 07:14), 1.5.4 (2014-07-14 15:13), 1.5.5 (2014-08-26 16:11), 1.6.0 (2015-01-12 23:15), 1.6.1 (2015-03-04 21:35), 2.0.0 (2015-12-07 11:09), 2.0.5 (2015-12-24 13:47), 2.0.7 (2016-01-15 19:45), 2.1.0 (2016-03-17 18:59), 2.2.0 (2016-05-17 00:41), 2.3.0 (2016-09-07 08:58), 2.4.0 (2016-11-03 00:29), 2.4.1 (2016-11-06 00:19), 2.4.2 (2017-03-07 15:02), 2.5.0 (2017-08-07 08:02), 2.5.1 (2017-10-17 23:35), 2.6.0 (2018-05-02 13:58), 2.6.1 (2018-05-18 14:42), 2.7.0 (2018-08-18 00:10), 2.8.0 (2019-01-02 17:20), 2.9.0 (2019-04-22 18:10), 2.9.1 (2019-07-08 21:00), 2.9.2 (2019-11-18 19:20), 2.9.3 (2020-01-21 08:50), 2.10.0 (2021-01-31 19:10), 2.10.1 (2021-02-10 16:00), 2.11.0 (2021-03-31 07:10), 2.12.0 (2021-07-08 12:00), 2.12.1 (2021-09-05 21:10), 2.13.0 (2021-10-15 16:10), 2.14.0 (2021-11-11 16:20), 3.0.0 (2022-01-04 00:00), 3.0.1 (2022-02-14 10:50), 3.0.2 (2022-03-02 01:10), 3.1.0 (2022-04-15 16:50), 3.1.1 (2022-07-06 22:30), 3.2.0 (2023-01-12 11:30), 3.2.1 (2023-03-03 19:30), 3.2.2 (2023-05-24 01:12), 3.2.3 (2023-12-06 15:30), 3.3.0 (2024-06-25 14:30), 3.3.1 (2024-07-25 16:30), 3.3.2 (2025-01-14 02:20)
Other packages that cited randomForestSRC R package
View randomForestSRC citation profile
Other R packages that randomForestSRC depends, imports, suggests or enhances
Complete documentation for randomForestSRC
Functions, R codes and Examples using the randomForestSRC R package
Some associated functions: breast . find.interaction.rfsrc . follic . get.tree.rfsrc . hd . holdout.vimp.rfsrc . housing . imbalanced.rfsrc . impute.rfsrc . max.subtree.rfsrc . nutrigenomic . partial.rfsrc . pbc . peakVO2 . plot.competing.risk.rfsrc . plot.quantreg.rfsrc . plot.rfsrc . plot.subsample.rfsrc . plot.survival.rfsrc . plot.variable.rfsrc . predict.rfsrc . print.rfsrc . quantreg.rfsrc . randomForestSRC_package . rfsrc.anonymous . rfsrc.fast . rfsrc.news . rfsrc . sidClustering.rfsrc . stat.split.rfsrc . subsample.rfsrc . synthetic.rfsrc . tune.rfsrc . var.select.rfsrc . vdv . veteran . vimp.rfsrc . wihs . wine . 
Some associated R codes: distance.R . find.interaction.rfsrc.R . generic.impute.rfsrc.R . generic.predict.rfsrc.R . get.tree.rfsrc.R . holdout.vimp.rfsrc.R . imbalanced.rfsrc.R . impute.rfsrc.R . max.subtree.rfsrc.R . partial.rfsrc.R . plot.competing.risk.rfsrc.R . plot.quantreg.rfsrc.R . plot.rfsrc.R . plot.subsample.rfsrc.R . plot.survival.rfsrc.R . plot.variable.rfsrc.R . predict.rfsrc.R . print.rfsrc.R . quantreg.rfsrc.R . rfsrc.R . rfsrc.anonymous.R . rfsrc.cart.R . rfsrc.fast.R . rfsrc.news.R . sidClustering.rfsrc.R . stat.split.rfsrc.R . subsample.rfsrc.R . synthetic.rfsrc.R . tune.nodesize.rfsrc.R . tune.rfsrc.R . utilities.R . utilities.data.R . utilities.factor.R . utilities.imbalanced.R . utilities.impute.R . utilities.multivariate.R . utilities.performance.R . utilities.predict.R . utilities.quantreg.R . utilities.sgreedy.R . utilities.subsample.R . utilities.subsample.bootstrap.R . utilities.survival.R . utilities.tdc.R . utilities.unsupervised.R . utilities.varselect.R . var.select.rfsrc.R . vimp.rfsrc.R . zzz.R .  Full randomForestSRC package functions and examples
Downloads during the last 30 days
03/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/14Downloads for randomForestSRC6080100120140160180200220240260280TrendBars

Today's Hot Picks in Authors and Packages

datadictionary  
Create a Data Dictionary
Creates a data dictionary from any dataframe or tibble in your R environment. You can opt to add va ...
Download / Learn more Package Citations See dependency  
apache.sedona  
R Interface for Apache Sedona
R interface for 'Apache Sedona' based on 'sparklyr' (). ...
Download / Learn more Package Citations See dependency  
hkclustering  
Ensemble Clustering using K Means and Hierarchical Clustering
Implements an ensemble algorithm for clustering combining a k-means and a hierarchical clustering ap ...
Download / Learn more Package Citations See dependency  
MultiKink  
Estimation and Inference for Multi-Kink Quantile Regression
Estimation and inference for multiple kink quantile regression for longitudinal data and the i.i.d d ...
Download / Learn more Package Citations See dependency  
MM4LMM  
Inference of Linear Mixed Models Through MM Algorithm
The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed mod ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,993

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA