Other packages > Find by keyword >

randomForestSRC  

Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)
View on CRAN: Click here


Download and install randomForestSRC package within the R console
Install from CRAN:
install.packages("randomForestSRC")

Install from Github:
library("remotes")
install_github("cran/randomForestSRC")

Install by package version:
library("remotes")
install_version("randomForestSRC", "3.3.1")



Attach the package and use:
library("randomForestSRC")
Maintained by
Udaya B. Kogalur
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2012-10-31
Latest Update: 2023-05-23
Description:
Fast OpenMP parallel computing of Breiman's random forests for univariate, multivariate, unsupervised, survival, competing risks, class imbalanced classification and quantile regression. New Mahalanobis splitting for correlated outcomes. Extreme random forests and randomized splitting. Suite of imputation methods for missing data. Fast random forests using subsampling. Confidence regions and standard errors for variable importance. New improved holdout importance. Case-specific importance. Minimal depth variable importance. Visualize trees on your Safari or Google Chrome browser. Anonymous random forests for data privacy.
How to cite:
Udaya B. Kogalur (2012). randomForestSRC: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). R package version 3.3.1, https://cran.r-project.org/web/packages/randomForestSRC. Accessed 21 Nov. 2024.
Previous versions and publish date:
1.0.0 (2012-10-31 17:21), 1.0.1 (2012-11-13 21:42), 1.0.2 (2012-12-07 07:40), 1.1.0 (2013-02-25 20:16), 1.2 (2013-04-30 06:28), 1.3 (2013-07-22 17:23), 1.4 (2013-12-10 23:06), 1.5.0 (2014-05-13 07:54), 1.5.1 (2014-05-16 07:38), 1.5.2 (2014-06-05 06:56), 1.5.3 (2014-06-25 07:14), 1.5.4 (2014-07-14 15:13), 1.5.5 (2014-08-26 16:11), 1.6.0 (2015-01-12 23:15), 1.6.1 (2015-03-04 21:35), 2.0.0 (2015-12-07 11:09), 2.0.5 (2015-12-24 13:47), 2.0.7 (2016-01-15 19:45), 2.1.0 (2016-03-17 18:59), 2.2.0 (2016-05-17 00:41), 2.3.0 (2016-09-07 08:58), 2.4.0 (2016-11-03 00:29), 2.4.1 (2016-11-06 00:19), 2.4.2 (2017-03-07 15:02), 2.5.0 (2017-08-07 08:02), 2.5.1 (2017-10-17 23:35), 2.6.0 (2018-05-02 13:58), 2.6.1 (2018-05-18 14:42), 2.7.0 (2018-08-18 00:10), 2.8.0 (2019-01-02 17:20), 2.9.0 (2019-04-22 18:10), 2.9.1 (2019-07-08 21:00), 2.9.2 (2019-11-18 19:20), 2.9.3 (2020-01-21 08:50), 2.10.0 (2021-01-31 19:10), 2.10.1 (2021-02-10 16:00), 2.11.0 (2021-03-31 07:10), 2.12.0 (2021-07-08 12:00), 2.12.1 (2021-09-05 21:10), 2.13.0 (2021-10-15 16:10), 2.14.0 (2021-11-11 16:20), 3.0.0 (2022-01-04 00:00), 3.0.1 (2022-02-14 10:50), 3.0.2 (2022-03-02 01:10), 3.1.0 (2022-04-15 16:50), 3.1.1 (2022-07-06 22:30), 3.2.0 (2023-01-12 11:30), 3.2.1 (2023-03-03 19:30), 3.2.2 (2023-05-24 01:12), 3.2.3 (2023-12-06 15:30), 3.3.0 (2024-06-25 14:30)
Other packages that cited randomForestSRC R package
View randomForestSRC citation profile
Other R packages that randomForestSRC depends, imports, suggests or enhances
Complete documentation for randomForestSRC
Functions, R codes and Examples using the randomForestSRC R package
Some associated functions: breast . find.interaction.rfsrc . follic . get.tree.rfsrc . hd . holdout.vimp.rfsrc . housing . imbalanced.rfsrc . impute.rfsrc . max.subtree.rfsrc . nutrigenomic . partial.rfsrc . pbc . peakVO2 . plot.competing.risk.rfsrc . plot.quantreg.rfsrc . plot.rfsrc . plot.subsample.rfsrc . plot.survival.rfsrc . plot.variable.rfsrc . predict.rfsrc . print.rfsrc . quantreg.rfsrc . randomForestSRC_package . rfsrc.anonymous . rfsrc.fast . rfsrc.news . rfsrc . sidClustering.rfsrc . stat.split.rfsrc . subsample.rfsrc . synthetic.rfsrc . tune.rfsrc . var.select.rfsrc . vdv . veteran . vimp.rfsrc . wihs . wine . 
Some associated R codes: distance.R . find.interaction.rfsrc.R . generic.impute.rfsrc.R . generic.predict.rfsrc.R . get.tree.rfsrc.R . holdout.vimp.rfsrc.R . imbalanced.rfsrc.R . impute.rfsrc.R . max.subtree.rfsrc.R . partial.rfsrc.R . plot.competing.risk.rfsrc.R . plot.quantreg.rfsrc.R . plot.rfsrc.R . plot.subsample.rfsrc.R . plot.survival.rfsrc.R . plot.variable.rfsrc.R . predict.rfsrc.R . print.rfsrc.R . quantreg.rfsrc.R . rfsrc.R . rfsrc.anonymous.R . rfsrc.cart.R . rfsrc.fast.R . rfsrc.news.R . sidClustering.rfsrc.R . stat.split.rfsrc.R . subsample.rfsrc.R . synthetic.rfsrc.R . tune.nodesize.rfsrc.R . tune.rfsrc.R . utilities.R . utilities.data.R . utilities.factor.R . utilities.imbalanced.R . utilities.impute.R . utilities.multivariate.R . utilities.performance.R . utilities.predict.R . utilities.quantreg.R . utilities.sgreedy.R . utilities.subsample.R . utilities.subsample.bootstrap.R . utilities.survival.R . utilities.tdc.R . utilities.unsupervised.R . utilities.varselect.R . var.select.rfsrc.R . vimp.rfsrc.R . zzz.R .  Full randomForestSRC package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

kgschart  
KGS Rank Graph Parser
Restore underlining numeric data from rating history graph of KGS (an online platform of the game o ...
Download / Learn more Package Citations See dependency  
pkgdepends  
Package Dependency Resolution and Downloads
Find recursive dependencies of 'R' packages from various sources. Solve the dependencies to obtain ...
Download / Learn more Package Citations See dependency  
RcppHNSW  
'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest Neighbors
'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This package provides a minimal R int ...
Download / Learn more Package Citations See dependency  
crossrun  
Joint Distribution of Number of Crossings and Longest Run
Joint distribution of number of crossings and the longest run in a series of independent Bernoulli ...
Download / Learn more Package Citations See dependency  
SCBiclust  
Identifies Mean, Variance, and Hierarchically Clustered Biclusters
Identifies a bicluster, a submatrix of the data such that the features and observations within the s ...
Download / Learn more Package Citations See dependency  
deductive  
Data Correction and Imputation Using Deductive Methods
Attempt to repair inconsistencies and missing values in data records by using information from vali ...
Download / Learn more Package Citations See dependency  

23,229

R Packages

199,929

Dependencies

62,984

Author Associations

23,230

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA