Other packages > Find by keyword >

mvdalab  

Multivariate Data Analysis Laboratory
View on CRAN: Click here


Download and install mvdalab package within the R console
Install from CRAN:
install.packages("mvdalab")

Install from Github:
library("remotes")
install_github("cran/mvdalab")

Install by package version:
library("remotes")
install_version("mvdalab", "1.7")



Attach the package and use:
library("mvdalab")
Maintained by
Nelson Lee Afanador
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2016-04-09
Latest Update: 2022-10-05
Description:
An open-source implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods including low dimensional embedding, classical multivariate statistical tools, and tools for enhanced interpretation of machine learning methods (i.e. intelligible models to provide important information for end-users). Target domains include extension to dedicated applications e.g. for manufacturing process modeling, spectroscopic analyses, and data mining.
How to cite:
Nelson Lee Afanador (2016). mvdalab: Multivariate Data Analysis Laboratory. R package version 1.7, https://cran.r-project.org/web/packages/mvdalab. Accessed 21 Nov. 2024.
Previous versions and publish date:
1.0 (2016-04-09 00:40), 1.1 (2016-07-09 10:45), 1.2 (2017-03-01 08:36), 1.3 (2017-10-04 16:38), 1.4 (2017-10-16 17:10), 1.5 (2021-05-15 01:30), 1.6 (2021-07-14 19:30)
Other packages that cited mvdalab R package
View mvdalab citation profile
Other R packages that mvdalab depends, imports, suggests or enhances
Complete documentation for mvdalab
Functions, R codes and Examples using the mvdalab R package
Some associated functions: BiPlot . College . MVComp . MVcis . MultCapability . PE . Penta . R2s . ScoreContrib . SeqimputeEM . T2 . Wang_Chen . Wang_Chen_Sim . Xresids . XresidualContrib . acfplot . ap.plot . bca.cis . bidiagpls.fit . boot.plots . coef.mvdareg . coefficients.boots . coefficients . coefficientsplot2D . coefsplot . contr.niets . ellipse.mvdalab . imputeBasic . imputeEM . imputeQs . imputeRough . introNAs . jk.after.boot . loadings.boots . loadings . loadingsplot . loadingsplot2D . mewma . model.matrix.mvdalab . mvdaboot . mvdalab-package-title . mvdaloo . mvrnorm.svd . my.dummy.df . no.intercept . pca.nipals . pcaFit . perc.cis . plot.R2s . plot.cp . plot.mvcomp . plot.mvdareg . plot.plusminus . plot.smc . plot.sr . plot.wrtpls . plsFit . plusMinusDat . plusminus.fit . plusminus.loo . plusminusFit . predict.mvdareg . print.mvdalab . print.plusminus . proCrustes . scoresplot . smc.acfTest . smc . sr . weight.boots . weights . weightsplot . weightsplot2D . wrtpls.fit . y.loadings.boots . y.loadings . 
Some associated R codes: BiPlot.R . MVComp.R . MVcis.R . MultCapability.R . PE.R . R2s.R . ScoreContrib.R . SeqimputeEM.R . T2.R . Xresids.R . XresidualContrib.R . acfplot.R . ap.plot.R . bca.cis.R . bidiagpls.fit.R . boot.plots.R . coef.mvdareg.R . coefficients.boots.R . coefficients.mvdareg.R . coefficientsplot2D.R . coefsplot.R . contr.niets.R . ellipse.mvdalab.R . imputeBasic.R . imputeEM.R . imputeQs.R . imputeRough.R . introNAs.R . jk.after.boot.R . loadings.boots.R . loadings.mvdareg.R . loadingsplot.R . loadingsplot2D.R . mewma.R . model.matrix.mvdareg.R . mvdaboot.R . mvdalab.R . mvdaloo.R . mvrnorm.svd.R . mvrnormBase.svd.R . my.dummy.df.R . no.intercept.R . pca.nipals.R . pcaFit.R . perc.cis.R . plot.R2s.R . plot.cp.R . plot.mvcomp.R . plot.mvdapca.R . plot.mvdareg.R . plot.plusminus.R . plot.wrtpls.R . plsFit.R . plusminus.fit.R . plusminus.loo.R . plusminusFit.R . predict.mvdareg.R . print.empca.R . print.mvdapca.R . print.mvdareg.R . print.npca.R . print.plusminus.R . print.proC.R . print.seqem.R . proCrustes.R . scoresplot.R . smc.R . smc.acfTest.R . sr.R . summary.mvdareg.R . summary.plusminus.R . weight.boots.R . weights.mvdareg.R . weightsplot.R . weightsplot2D.R . wrtpls.fit.R . y.loadings.R . y.loadings.boots.R .  Full mvdalab package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

SCBiclust  
Identifies Mean, Variance, and Hierarchically Clustered Biclusters
Identifies a bicluster, a submatrix of the data such that the features and observations within the s ...
Download / Learn more Package Citations See dependency  
pkgdepends  
Package Dependency Resolution and Downloads
Find recursive dependencies of 'R' packages from various sources. Solve the dependencies to obtain ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
RcppHNSW  
'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest Neighbors
'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This package provides a minimal R int ...
Download / Learn more Package Citations See dependency  
crossrun  
Joint Distribution of Number of Crossings and Longest Run
Joint distribution of number of crossings and the longest run in a series of independent Bernoulli ...
Download / Learn more Package Citations See dependency  
kgschart  
KGS Rank Graph Parser
Restore underlining numeric data from rating history graph of KGS (an online platform of the game o ...
Download / Learn more Package Citations See dependency  

23,229

R Packages

199,929

Dependencies

62,984

Author Associations

23,230

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA