Other packages > Find by keyword >

mvdalab  

Multivariate Data Analysis Laboratory
View on CRAN: Click here


Download and install mvdalab package within the R console
Install from CRAN:
install.packages("mvdalab")

Install from Github:
library("remotes")
install_github("cran/mvdalab")

Install by package version:
library("remotes")
install_version("mvdalab", "1.7")



Attach the package and use:
library("mvdalab")
Maintained by
Nelson Lee Afanador
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2016-04-09
Latest Update: 2022-10-05
Description:
An open-source implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods including low dimensional embedding, classical multivariate statistical tools, and tools for enhanced interpretation of machine learning methods (i.e. intelligible models to provide important information for end-users). Target domains include extension to dedicated applications e.g. for manufacturing process modeling, spectroscopic analyses, and data mining.
How to cite:
Nelson Lee Afanador (2016). mvdalab: Multivariate Data Analysis Laboratory. R package version 1.7, https://cran.r-project.org/web/packages/mvdalab. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.0 (2016-04-09 00:40), 1.1 (2016-07-09 10:45), 1.2 (2017-03-01 08:36), 1.3 (2017-10-04 16:38), 1.4 (2017-10-16 17:10), 1.5 (2021-05-15 01:30), 1.6 (2021-07-14 19:30)
Other packages that cited mvdalab R package
View mvdalab citation profile
Other R packages that mvdalab depends, imports, suggests or enhances
Complete documentation for mvdalab
Functions, R codes and Examples using the mvdalab R package
Some associated functions: BiPlot . College . MVComp . MVcis . MultCapability . PE . Penta . R2s . ScoreContrib . SeqimputeEM . T2 . Wang_Chen . Wang_Chen_Sim . Xresids . XresidualContrib . acfplot . ap.plot . bca.cis . bidiagpls.fit . boot.plots . coef.mvdareg . coefficients.boots . coefficients . coefficientsplot2D . coefsplot . contr.niets . ellipse.mvdalab . imputeBasic . imputeEM . imputeQs . imputeRough . introNAs . jk.after.boot . loadings.boots . loadings . loadingsplot . loadingsplot2D . mewma . model.matrix.mvdalab . mvdaboot . mvdalab-package-title . mvdaloo . mvrnorm.svd . my.dummy.df . no.intercept . pca.nipals . pcaFit . perc.cis . plot.R2s . plot.cp . plot.mvcomp . plot.mvdareg . plot.plusminus . plot.smc . plot.sr . plot.wrtpls . plsFit . plusMinusDat . plusminus.fit . plusminus.loo . plusminusFit . predict.mvdareg . print.mvdalab . print.plusminus . proCrustes . scoresplot . smc.acfTest . smc . sr . weight.boots . weights . weightsplot . weightsplot2D . wrtpls.fit . y.loadings.boots . y.loadings . 
Some associated R codes: BiPlot.R . MVComp.R . MVcis.R . MultCapability.R . PE.R . R2s.R . ScoreContrib.R . SeqimputeEM.R . T2.R . Xresids.R . XresidualContrib.R . acfplot.R . ap.plot.R . bca.cis.R . bidiagpls.fit.R . boot.plots.R . coef.mvdareg.R . coefficients.boots.R . coefficients.mvdareg.R . coefficientsplot2D.R . coefsplot.R . contr.niets.R . ellipse.mvdalab.R . imputeBasic.R . imputeEM.R . imputeQs.R . imputeRough.R . introNAs.R . jk.after.boot.R . loadings.boots.R . loadings.mvdareg.R . loadingsplot.R . loadingsplot2D.R . mewma.R . model.matrix.mvdareg.R . mvdaboot.R . mvdalab.R . mvdaloo.R . mvrnorm.svd.R . mvrnormBase.svd.R . my.dummy.df.R . no.intercept.R . pca.nipals.R . pcaFit.R . perc.cis.R . plot.R2s.R . plot.cp.R . plot.mvcomp.R . plot.mvdapca.R . plot.mvdareg.R . plot.plusminus.R . plot.wrtpls.R . plsFit.R . plusminus.fit.R . plusminus.loo.R . plusminusFit.R . predict.mvdareg.R . print.empca.R . print.mvdapca.R . print.mvdareg.R . print.npca.R . print.plusminus.R . print.proC.R . print.seqem.R . proCrustes.R . scoresplot.R . smc.R . smc.acfTest.R . sr.R . summary.mvdareg.R . summary.plusminus.R . weight.boots.R . weights.mvdareg.R . weightsplot.R . weightsplot2D.R . wrtpls.fit.R . y.loadings.R . y.loadings.boots.R .  Full mvdalab package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA