Other packages > Find by keyword >

mvdalab  

Multivariate Data Analysis Laboratory
View on CRAN: Click here


Download and install mvdalab package within the R console
Install from CRAN:
install.packages("mvdalab")

Install from Github:
library("remotes")
install_github("cran/mvdalab")

Install by package version:
library("remotes")
install_version("mvdalab", "1.7")



Attach the package and use:
library("mvdalab")
Maintained by
Nelson Lee Afanador
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2016-04-09
Latest Update: 2022-10-05
Description:
An open-source implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods including low dimensional embedding, classical multivariate statistical tools, and tools for enhanced interpretation of machine learning methods (i.e. intelligible models to provide important information for end-users). Target domains include extension to dedicated applications e.g. for manufacturing process modeling, spectroscopic analyses, and data mining.
How to cite:
Nelson Lee Afanador (2016). mvdalab: Multivariate Data Analysis Laboratory. R package version 1.7, https://cran.r-project.org/web/packages/mvdalab. Accessed 18 Feb. 2025.
Previous versions and publish date:
1.0 (2016-04-09 00:40), 1.1 (2016-07-09 10:45), 1.2 (2017-03-01 08:36), 1.3 (2017-10-04 16:38), 1.4 (2017-10-16 17:10), 1.5 (2021-05-15 01:30), 1.6 (2021-07-14 19:30)
Other packages that cited mvdalab R package
View mvdalab citation profile
Other R packages that mvdalab depends, imports, suggests or enhances
Complete documentation for mvdalab
Functions, R codes and Examples using the mvdalab R package
Some associated functions: BiPlot . College . MVComp . MVcis . MultCapability . PE . Penta . R2s . ScoreContrib . SeqimputeEM . T2 . Wang_Chen . Wang_Chen_Sim . Xresids . XresidualContrib . acfplot . ap.plot . bca.cis . bidiagpls.fit . boot.plots . coef.mvdareg . coefficients.boots . coefficients . coefficientsplot2D . coefsplot . contr.niets . ellipse.mvdalab . imputeBasic . imputeEM . imputeQs . imputeRough . introNAs . jk.after.boot . loadings.boots . loadings . loadingsplot . loadingsplot2D . mewma . model.matrix.mvdalab . mvdaboot . mvdalab-package-title . mvdaloo . mvrnorm.svd . my.dummy.df . no.intercept . pca.nipals . pcaFit . perc.cis . plot.R2s . plot.cp . plot.mvcomp . plot.mvdareg . plot.plusminus . plot.smc . plot.sr . plot.wrtpls . plsFit . plusMinusDat . plusminus.fit . plusminus.loo . plusminusFit . predict.mvdareg . print.mvdalab . print.plusminus . proCrustes . scoresplot . smc.acfTest . smc . sr . weight.boots . weights . weightsplot . weightsplot2D . wrtpls.fit . y.loadings.boots . y.loadings . 
Some associated R codes: BiPlot.R . MVComp.R . MVcis.R . MultCapability.R . PE.R . R2s.R . ScoreContrib.R . SeqimputeEM.R . T2.R . Xresids.R . XresidualContrib.R . acfplot.R . ap.plot.R . bca.cis.R . bidiagpls.fit.R . boot.plots.R . coef.mvdareg.R . coefficients.boots.R . coefficients.mvdareg.R . coefficientsplot2D.R . coefsplot.R . contr.niets.R . ellipse.mvdalab.R . imputeBasic.R . imputeEM.R . imputeQs.R . imputeRough.R . introNAs.R . jk.after.boot.R . loadings.boots.R . loadings.mvdareg.R . loadingsplot.R . loadingsplot2D.R . mewma.R . model.matrix.mvdareg.R . mvdaboot.R . mvdalab.R . mvdaloo.R . mvrnorm.svd.R . mvrnormBase.svd.R . my.dummy.df.R . no.intercept.R . pca.nipals.R . pcaFit.R . perc.cis.R . plot.R2s.R . plot.cp.R . plot.mvcomp.R . plot.mvdapca.R . plot.mvdareg.R . plot.plusminus.R . plot.wrtpls.R . plsFit.R . plusminus.fit.R . plusminus.loo.R . plusminusFit.R . predict.mvdareg.R . print.empca.R . print.mvdapca.R . print.mvdareg.R . print.npca.R . print.plusminus.R . print.proC.R . print.seqem.R . proCrustes.R . scoresplot.R . smc.R . smc.acfTest.R . sr.R . summary.mvdareg.R . summary.plusminus.R . weight.boots.R . weights.mvdareg.R . weightsplot.R . weightsplot2D.R . wrtpls.fit.R . y.loadings.R . y.loadings.boots.R .  Full mvdalab package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

clustMixType  
k-Prototypes Clustering for Mixed Variable-Type Data
Functions to perform k-prototypes partitioning clustering for mixed variable-type data according to ...
Download / Learn more Package Citations See dependency  
readxlsb  
Read 'Excel' Binary (.xlsb) Workbooks
Import data from 'Excel' binary (.xlsb) workbooks into R. ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
RobustBayesianCopas  
Robust Bayesian Copas Selection Model
Fits the robust Bayesian Copas (RBC) selection model of Bai et al. (2020) for cor ...
Download / Learn more Package Citations See dependency  
ppmf  
Read Census Privacy Protected Microdata Files
Implements data processing described in to align modern differentially ...
Download / Learn more Package Citations See dependency  
fclust  
Fuzzy Clustering
Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visuali ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA