Other packages > Find by keyword >

multibias  

Simultaneous Multi-Bias Adjustment
View on CRAN: Click here


Download and install multibias package within the R console
Install from CRAN:
install.packages("multibias")

Install from Github:
library("remotes")
install_github("cran/multibias")

Install by package version:
library("remotes")
install_version("multibias", "1.6.1")



Attach the package and use:
library("multibias")
Maintained by
Paul Brendel
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2023-09-21
Latest Update: 2024-01-27
Description:
Quantify the causal effect of a binary exposure on a binary outcome with adjustment for multiple biases. The functions can simultaneously adjust for any combination of uncontrolled confounding, exposure/outcome misclassification, and selection bias. The underlying method generalizes the concept of combining inverse probability of selection weighting with predictive value weighting. Simultaneous multi-bias analysis can be used to enhance the validity and transparency of real-world evidence obtained from observational, longitudinal studies. Based on the work from Paul Brendel, Aracelis Torres, and Onyebuchi Arah (2023) .
How to cite:
Paul Brendel (2023). multibias: Simultaneous Multi-Bias Adjustment. R package version 1.6.1, https://cran.r-project.org/web/packages/multibias. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.0.0 (2023-09-21 15:30), 1.1.0 (2023-10-06 15:40), 1.2.0 (2023-10-16 06:20), 1.2.1 (2023-10-22 01:20), 1.3.0 (2023-12-11 05:50), 1.4.0 (2024-01-28 00:40), 1.5.0 (2024-05-05 18:40), 1.5.1 (2024-06-20 05:10), 1.5.2 (2024-08-21 12:00), 1.5.3 (2024-09-23 01:20), 1.6 (2024-10-26 22:10)
Other packages that cited multibias R package
View multibias citation profile
Other R packages that multibias depends, imports, suggests or enhances
Complete documentation for multibias
Functions, R codes and Examples using the multibias R package
Some associated functions: adjust_emc . adjust_emc_omc . adjust_emc_sel . adjust_multinom_emc_omc . adjust_multinom_uc_emc . adjust_multinom_uc_emc_sel . adjust_multinom_uc_omc . adjust_omc . adjust_omc_sel . adjust_sel . adjust_uc . adjust_uc_emc . adjust_uc_emc_sel . adjust_uc_omc . adjust_uc_sel . df_emc . df_emc_omc . df_emc_omc_source . df_emc_sel . df_emc_sel_source . df_emc_source . df_omc . df_omc_sel . df_omc_sel_source . df_omc_source . df_sel . df_sel_source . df_uc . df_uc_emc . df_uc_emc_sel . df_uc_emc_sel_source . df_uc_emc_source . df_uc_omc . df_uc_omc_source . df_uc_sel . df_uc_sel_source . df_uc_source . evans . 
Some associated R codes: adjust_emc.R . adjust_emc_omc.R . adjust_emc_sel.R . adjust_multinom_emc_omc.R . adjust_multinom_uc_emc.R . adjust_multinom_uc_emc_sel.R . adjust_multinom_uc_omc.R . adjust_omc.R . adjust_sel.R . adjust_uc.R . adjust_uc_emc.R . adjust_uc_emc_sel.R . adjust_uc_omc.R . adjust_uc_sel.R . adust_omc_sel.R . df_emc.R . df_emc_omc.R . df_emc_omc_source.R . df_emc_sel.R . df_emc_sel_source.R . df_emc_source.R . df_omc.R . df_omc_sel.R . df_omc_sel_source.R . df_omc_source.R . df_sel.R . df_sel_source.R . df_uc.R . df_uc_emc.R . df_uc_emc_sel.R . df_uc_emc_sel_source.R . df_uc_emc_source.R . df_uc_omc.R . df_uc_omc_source.R . df_uc_sel.R . df_uc_sel_source.R . df_uc_source.R . evans.R .  Full multibias package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA