Other packages > Find by keyword >

mlrCPO  

Composable Preprocessing Operators and Pipelines for Machine Learning
View on CRAN: Click here


Download and install mlrCPO package within the R console
Install from CRAN:
install.packages("mlrCPO")

Install from Github:
library("remotes")
install_github("cran/mlrCPO")

Install by package version:
library("remotes")
install_version("mlrCPO", "0.3.7-7")



Attach the package and use:
library("mlrCPO")
Maintained by
Martin Binder
[Scholar Profile | Author Map]
First Published: 2018-04-05
Latest Update: 2022-11-17
Description:
Toolset that enriches 'mlr' with a diverse set of preprocessing operators. Composable Preprocessing Operators ("CPO"s) are first-class R objects that can be applied to data.frames and 'mlr' "Task"s to modify data, can be attached to 'mlr' "Learner"s to add preprocessing to machine learning algorithms, and can be composed to form preprocessing pipelines.
How to cite:
Martin Binder (2018). mlrCPO: Composable Preprocessing Operators and Pipelines for Machine Learning. R package version 0.3.7-7, https://cran.r-project.org/web/packages/mlrCPO. Accessed 07 May. 2025.
Previous versions and publish date:
0.3.2 (2018-04-05 18:24), 0.3.3 (2018-04-21 23:50), 0.3.4-1 (2018-10-02 22:20), 0.3.4-2 (2019-01-10 21:30), 0.3.4-3 (2019-05-11 21:40), 0.3.4-4 (2019-08-08 00:40), 0.3.4 (2018-07-03 00:00), 0.3.6 (2020-04-06 11:00), 0.3.7-1 (2021-01-11 09:00), 0.3.7-2 (2021-02-24 23:40), 0.3.7-3 (2021-11-10 08:50), 0.3.7-4 (2022-07-20 16:00), 0.3.7-5 (2022-10-19 01:52), 0.3.7-6 (2022-11-17 19:10), 0.3.7 (2020-11-15 21:30)
Other packages that cited mlrCPO R package
View mlrCPO citation profile
Other R packages that mlrCPO depends, imports, suggests or enhances
Complete documentation for mlrCPO
Functions, R codes and Examples using the mlrCPO R package
Some associated functions: CPO . CPOConstructor . CPOLearner . CPOTrained . NULLCPO . applyCPO . as.list.CPO . attachCPO . clearRI . composeCPO . covrTraceCPOs . cpoApplyFun . cpoApplyFunRegrTarget . cpoAsNumeric . cpoCache . cpoCbind . cpoCollapseFact . cpoDropConstants . cpoDropMostlyConstants . cpoDummyEncode . cpoFilterAnova . cpoFilterCarscore . cpoFilterChiSquared . cpoFilterFeatures . cpoFilterGainRatio . cpoFilterInformationGain . cpoFilterKruskal . cpoFilterLinearCorrelation . cpoFilterMrmr . cpoFilterOneR . cpoFilterPermutationImportance . cpoFilterRankCorrelation . cpoFilterRelief . cpoFilterRfCImportance . cpoFilterRfImportance . cpoFilterRfSRCImportance . cpoFilterRfSRCMinDepth . cpoFilterSymmetricalUncertainty . cpoFilterUnivariate . cpoFilterVariance . cpoFixFactors . cpoIca . cpoImpactEncodeClassif . cpoImpactEncodeRegr . cpoImpute . cpoImputeConstant . cpoImputeHist . cpoImputeLearner . cpoImputeMax . cpoImputeMean . cpoImputeMedian . cpoImputeMin . cpoImputeMode . cpoImputeNormal . cpoImputeUniform . cpoLogTrafoRegr . cpoMakeCols . cpoMissingIndicators . cpoModelMatrix . cpoOversample . cpoPca . cpoProbEncode . cpoQuantileBinNumerics . cpoRegrResiduals . cpoResponseFromSE . cpoSample . cpoScale . cpoScaleMaxAbs . cpoScaleRange . cpoSelect . cpoSmote . cpoSpatialSign . cpoTemplate . cpoTransformParams . cpoWrap . discrete . funct . getCPOAffect . getCPOClass . getCPOConstructor . getCPOId . getCPOName . getCPOOperatingType . getCPOPredictType . getCPOProperties . getCPOTrainedCPO . getCPOTrainedCapability . getCPOTrainedState . getLearnerBare . getLearnerCPO . grapes-greater-than-greater-than-grapes . identicalCPO . internal-grapes-greater-than-greater-than-grapes . invert . is.inverter . is.nullcpo . is.retrafo . listCPO . makeCPO . makeCPOCase . makeCPOMultiplex . makeCPOTrainedFromState . mlrCPO-package . nullToNullcpo . nullcpoToNull . pSS . pipeCPO . print.CPOConstructor . randomForestSRC_filters . setCPOId . untyped . 
Some associated R codes: CPOHelp.R . CPO_applyFun.R . CPO_asNumeric.R . CPO_cbind.R . CPO_collapseFact.R . CPO_dropConstants.R . CPO_dropMostlyConstants.R . CPO_encode.R . CPO_filterFeatures.R . CPO_fixFactors.R . CPO_ica.R . CPO_impute.R . CPO_makeCols.R . CPO_meta.R . CPO_missingIndicators.R . CPO_modelMatrix.R . CPO_pca.R . CPO_quantileBinNumerics.R . CPO_regrResiduals.R . CPO_responseFromSE.R . CPO_scale.R . CPO_scaleMaxAbs.R . CPO_scaleRange.R . CPO_select.R . CPO_smote.R . CPO_spatialSign.R . CPO_subsample.R . CPO_wrap.R . FormatCheck.R . NULLCPO.R . ParamSetSugar.R . RandomForestSRC.R . RetrafoState.R . attributes.R . auxhelp.R . auxiliary.R . callCPO.R . callInterface.R . composeProperties.R . doublecaret.R . fauxCPOConstructor.R . inverter.R . learner.R . listCPO.R . makeCPO.R . makeCPOHelp.R . operators.R . parameters.R . print.R . properties.R . zzz.R .  Full mlrCPO package functions and examples
Downloads during the last 30 days
04/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/1804/1904/2004/2104/2204/2304/2404/2504/2604/2704/2804/2904/3005/0105/0205/0305/0405/0505/06Downloads for mlrCPO246810121416182022242628TrendBars

Today's Hot Picks in Authors and Packages

funLBM  
Model-Based Co-Clustering of Functional Data
The funLBM algorithm allows to simultaneously cluster the rows and the columns of a data matrix wher ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
aroma.affymetrix  
Analysis of Large Affymetrix Microarray Data Sets
A cross-platform R framework that facilitates processing of any number of Affymetrix microarray samp ...
Download / Learn more Package Citations See dependency  
MLDS  
Maximum Likelihood Difference Scaling
Difference scaling is a method for scaling perceived supra-threshold differences. The package cont ...
Download / Learn more Package Citations See dependency  
humanize  
Create Values for Human Consumption
An almost direct port of the 'python' 'humanize' package . Thi ...
Download / Learn more Package Citations See dependency  

24,205

R Packages

207,311

Dependencies

65,312

Author Associations

24,206

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA