Other packages > Find by keyword >

mlr  

Machine Learning in R
View on CRAN: Click here


Download and install mlr package within the R console
Install from CRAN:
install.packages("mlr")

Install from Github:
library("remotes")
install_github("cran/mlr")

Install by package version:
library("remotes")
install_version("mlr", "2.19.2")



Attach the package and use:
library("mlr")
Maintained by
Martin Binder
[Scholar Profile | Author Map]
First Published: 2013-08-30
Latest Update: 2022-09-29
Description:
Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.
How to cite:
Martin Binder (2013). mlr: Machine Learning in R. R package version 2.19.2, https://cran.r-project.org/web/packages/mlr. Accessed 12 Apr. 2025.
Previous versions and publish date:
1.1-18 (2013-08-30 01:32), 2.0 (2014-07-04 02:25), 2.1 (2014-07-21 20:08), 2.2 (2014-10-29 07:43), 2.3 (2015-02-04 07:43), 2.4 (2015-06-13 00:40), 2.5 (2015-11-20 17:38), 2.6 (2015-11-26 08:38), 2.7 (2015-12-04 15:58), 2.8 (2016-02-13 08:37), 2.9 (2016-08-03 18:03), 2.10 (2017-02-07 10:08), 2.11 (2017-03-15 08:49), 2.12.1 (2018-03-29 12:03), 2.12 (2018-03-11 01:07), 2.13 (2018-08-28 14:30), 2.14.0 (2019-04-26 00:00), 2.15.0 (2019-08-06 17:10), 2.16.0 (2019-11-26 15:50), 2.17.0 (2020-01-10 21:00), 2.17.1 (2020-03-24 11:40), 2.18.0 (2020-10-05 12:20), 2.19.0 (2021-02-22 15:50), 2.19.1 (2022-09-29 15:30)
Other packages that cited mlr R package
View mlr citation profile
Other R packages that mlr depends, imports, suggests or enhances
Complete documentation for mlr
Functions, R codes and Examples using the mlr R package
Some associated functions: Aggregation . BenchmarkResult . ClassifTask . ClusterTask . ConfusionMatrix . CostSensTask . FailureModel . FeatSelControl . FeatSelResult . LearnerProperties . MeasureProperties . MultilabelTask . Prediction . RLearner . RegrTask . ResamplePrediction . ResampleResult . SurvTask . Task . TaskDesc . TuneControl . TuneMultiCritControl . TuneMultiCritResult . TuneResult . addRRMeasure . aggregations . agri.task . analyzeFeatSelResult . asROCRPrediction . batchmark . bc.task . benchmark . bh.task . cache_helpers . calculateConfusionMatrix . calculateROCMeasures . capLargeValues . changeData . checkLearner . checkPredictLearnerOutput . configureMlr . convertBMRToRankMatrix . convertMLBenchObjToTask . costiris.task . createDummyFeatures . createSpatialResamplingPlots . crossover . downsample . dropFeatures . estimateRelativeOverfitting . estimateResidualVariance . extractFDABsignal . extractFDADTWKernel . extractFDAFPCA . extractFDAFeatures . extractFDAFourier . extractFDAMultiResFeatures . extractFDATsfeatures . extractFDAWavelets . filterFeatures . friedmanPostHocTestBMR . friedmanTestBMR . fuelsubset.task . generateCalibrationData . generateCritDifferencesData . generateFeatureImportanceData . generateFilterValuesData . generateHyperParsEffectData . generateLearningCurveData . generatePartialDependenceData . generateThreshVsPerfData . getBMRAggrPerformances . getBMRFeatSelResults . getBMRFilteredFeatures . getBMRLearnerIds . getBMRLearnerShortNames . getBMRLearners . getBMRMeasureIds . getBMRMeasures . getBMRModels . getBMRPerformances . getBMRPredictions . getBMRTaskDescriptions . getBMRTaskDescs . getBMRTaskIds . getBMRTuneResults . getCaretParamSet . getClassWeightParam . getConfMatrix . getDefaultMeasure . getFailureModelDump . getFailureModelMsg . getFeatSelResult . getFeatureImportance . getFeatureImportanceLearner . getFilteredFeatures . getFunctionalFeatures . getHomogeneousEnsembleModels . getHyperPars . getLearnerId . getLearnerModel . getLearnerNote . getLearnerPackages . getLearnerParVals . getLearnerParamSet . getLearnerPredictType . getLearnerShortName . getLearnerType . getMlrOptions . getMultilabelBinaryPerformances . getNestedTuneResultsOptPathDf . getNestedTuneResultsX . getOOBPreds . getOOBPredsLearner . getParamSet . getPredictionDump . getPredictionProbabilities . getPredictionResponse . getPredictionTaskDesc . getProbabilities . getRRDump . getRRPredictionList . getRRPredictions . getRRTaskDesc . getRRTaskDescription . getResamplingIndices . getStackedBaseLearnerPredictions . getTaskClassLevels . getTaskCosts . getTaskData . getTaskDesc . getTaskDescription . getTaskFeatureNames . getTaskFormula . getTaskId . getTaskNFeats . getTaskSize . getTaskTargetNames . getTaskTargets . getTaskType . getTuneResult . getTuneResultOptPath . gunpoint.task . hasFunctionalFeatures . hasProperties . helpLearner . helpLearnerParam . imputations . impute . iris.task . isFailureModel . joinClassLevels . learnerArgsToControl . learners . listFilterEnsembleMethods . listFilterMethods . listLearnerProperties . listLearners . listMeasureProperties . listMeasures . listTaskTypes . lung.task . makeAggregation . makeBaggingWrapper . makeBaseWrapper . makeChainModel . makeClassificationViaRegressionWrapper . makeConstantClassWrapper . makeCostMeasure . makeCostSensClassifWrapper . makeCostSensRegrWrapper . makeCostSensWeightedPairsWrapper . makeCustomResampledMeasure . makeDownsampleWrapper . makeDummyFeaturesWrapper . makeExtractFDAFeatMethod . makeExtractFDAFeatsWrapper . makeFeatSelWrapper . makeFilter . makeFilterEnsemble . makeFilterWrapper . makeFixedHoldoutInstance . makeFunctionalData . makeImputeMethod . makeImputeWrapper . makeLearner . makeLearners . makeMeasure . makeModelMultiplexer . makeModelMultiplexerParamSet . makeMulticlassWrapper . makeMultilabelBinaryRelevanceWrapper . makeMultilabelClassifierChainsWrapper . makeMultilabelDBRWrapper . makeMultilabelNestedStackingWrapper . makeMultilabelStackingWrapper . makeOverBaggingWrapper . makePreprocWrapper . makePreprocWrapperCaret . makeRLearner.classif.fdausc.glm . makeRLearner.classif.fdausc.kernel . makeRLearner.classif.fdausc.np . makeRemoveConstantFeaturesWrapper . makeResampleDesc . makeResampleInstance . makeSMOTEWrapper . makeStackedLearner . makeTaskDesc . makeTaskDescInternal . makeTuneControlCMAES . makeTuneControlDesign . makeTuneControlGenSA . makeTuneControlGrid . makeTuneControlIrace . makeTuneControlMBO . makeTuneControlRandom . makeTuneWrapper . makeUndersampleWrapper . makeWeightedClassesWrapper . makeWrappedModel . measures . mergeBenchmarkResults . mergeSmallFactorLevels . mlr-package . mlrFamilies . mtcars.task . normalizeFeatures . oversample . parallelization . performance . phoneme.task . pid.task . plotBMRBoxplots . plotBMRRanksAsBarChart . plotBMRSummary . plotCalibration . plotCritDifferences . plotFilterValues . plotHyperParsEffect . plotLearnerPrediction . plotLearningCurve . plotPartialDependence . plotROCCurves . plotResiduals . plotThreshVsPerf . plotTuneMultiCritResult . predict.WrappedModel . predictLearner . reduceBatchmarkResults . reextractFDAFeatures . reimpute . removeConstantFeatures . removeHyperPars . resample . selectFeatures . setAggregation . setHyperPars . setHyperPars2 . setId . setLearnerId . setMeasurePars . setPredictThreshold . setPredictType . setThreshold . simplifyMeasureNames . smote . sonar.task . spam.task . spatial.task . subsetTask . summarizeColumns . summarizeLevels . train . trainLearner . tuneParams . tuneParamsMultiCrit . tuneThreshold . wpbc.task . yeast.task . 
Some associated R codes: Aggregation.R . BaggingWrapper.R . BaseEnsemble.R . BaseEnsemble_operators.R . BaseWrapper.R . BaseWrapper_operators.R . BenchmarkResultOrderLevels.R . BenchmarkResult_operators.R . ChainModel.R . ChainModel_operators.R . ClassifTask.R . ClassificationViaRegressionWrapper.R . ClusterTask.R . ConstantClassWrapper.R . CostSensClassifWrapper.R . CostSensRegrWrapper.R . CostSensTask.R . CostSensWeightedPairsWrapper.R . DownsampleWrapper.R . DummyFeaturesWrapper.R . FailureModel.R . FeatSelControl.R . FeatSelControlExhaustive.R . FeatSelControlGA.R . FeatSelControlRandom.R . FeatSelControlSequential.R . FeatSelResult.R . FeatSelWrapper.R . Filter.R . FilterEnsemble.R . FilterWrapper.R . HoldoutInstance_make_fixed.R . HomogeneousEnsemble.R . Impute.R . ImputeMethods.R . ImputeWrapper.R . Learner.R . Learner_operators.R . Learner_properties.R . Measure.R . Measure_colAUC.R . Measure_custom_resampled.R . Measure_make_cost.R . Measure_operators.R . Measure_properties.R . ModelMultiplexer.R . ModelMultiplexerParamSet.R . MulticlassWrapper.R . MultilabelBinaryRelevanceWrapper.R . MultilabelClassifierChainsWrapper.R . MultilabelDBRWrapper.R . MultilabelNestedStackingWrapper.R . MultilabelStackingWrapper.R . MultilabelTask.R . NoFeaturesModel.R . OptControl.R . OptResult.R . OptWrapper.R . OverBaggingWrapper.R . OverUnderSampling.R . OverUndersampleWrapper.R . Prediction.R . Prediction_operators.R . PreprocWrapper.R . PreprocWrapperCaret.R . RLearner.R . RLearner_classif_C50.R . RLearner_classif_FDboost.R . RLearner_classif_IBk.R . RLearner_classif_J48.R . RLearner_classif_JRip.R . RLearner_classif_LiblineaRL1L2SVC.R . RLearner_classif_LiblineaRL1LogReg.R . RLearner_classif_LiblineaRL2L1SVC.R . RLearner_classif_LiblineaRL2LogReg.R . RLearner_classif_LiblineaRL2SVC.R . RLearner_classif_LiblineaRMultiClassSVC.R . RLearner_classif_OneR.R . RLearner_classif_PART.R . RLearner_classif_RRF.R . RLearner_classif_ada.R . RLearner_classif_adaboostm1.R . RLearner_classif_bartMachine.R . RLearner_classif_binomial.R . RLearner_classif_boosting.R . RLearner_classif_bst.R . RLearner_classif_cforest.R . RLearner_classif_clusterSVM.R . RLearner_classif_ctree.R . RLearner_classif_cvglmnet.R . RLearner_classif_dbnDNN.R . RLearner_classif_dcSVM.R . RLearner_classif_earth.R . RLearner_classif_evtree.R . RLearner_classif_fdausc.glm.R . RLearner_classif_fdausc.kernel.R . RLearner_classif_fdausc.knn.R . RLearner_classif_fdausc.np.R . RLearner_classif_featureless.R . RLearner_classif_fgam.R . RLearner_classif_fnn.R . RLearner_classif_gamboost.R . RLearner_classif_gaterSVM.R . RLearner_classif_gausspr.R . RLearner_classif_gbm.R . RLearner_classif_glmboost.R . RLearner_classif_glmnet.R . RLearner_classif_h2odeeplearning.R . RLearner_classif_h2ogbm.R . RLearner_classif_h2oglm.R . RLearner_classif_h2orandomForest.R . RLearner_classif_kknn.R . RLearner_classif_knn.R . RLearner_classif_ksvm.R . RLearner_classif_lda.R . RLearner_classif_logreg.R . RLearner_classif_lssvm.R . RLearner_classif_lvq1.R . RLearner_classif_mda.R . RLearner_classif_mlp.R . RLearner_classif_multinom.R . RLearner_classif_naiveBayes.R . RLearner_classif_neuralnet.R . RLearner_classif_nnTrain.R . RLearner_classif_nnet.R . RLearner_classif_pamr.R . RLearner_classif_penalized.R . RLearner_classif_plr.R . RLearner_classif_plsdaCaret.R . RLearner_classif_probit.R . RLearner_classif_qda.R . RLearner_classif_rFerns.R . RLearner_classif_randomForest.R . RLearner_classif_ranger.R . RLearner_classif_rda.R . RLearner_classif_rotationForest.R . RLearner_classif_rpart.R . RLearner_classif_saeDNN.R . RLearner_classif_sda.R . RLearner_classif_sparseLDA.R . RLearner_classif_svm.R . RLearner_classif_xgboost.R . RLearner_cluster_Cobweb.R . RLearner_cluster_EM.R . RLearner_cluster_FarthestFirst.R . RLearner_cluster_MiniBatchKmeans.R . RLearner_cluster_SimpleKMeans.R . RLearner_cluster_XMeans.R . RLearner_cluster_cmeans.R . RLearner_cluster_dbscan.R . RLearner_cluster_kkmeans.R . RLearner_cluster_kmeans.R . RLearner_multilabel_cforest.R . RLearner_multilabel_rFerns.R . RLearner_regr_FDboost.R . RLearner_regr_GPfit.R . RLearner_regr_IBk.R . RLearner_regr_LiblineaRL2L1SVR.R . RLearner_regr_LiblineaRL2L2SVR.R . RLearner_regr_RRF.R . RLearner_regr_bartMachine.R . RLearner_regr_bcart.R . RLearner_regr_bgp.R . RLearner_regr_bgpllm.R . RLearner_regr_blm.R . RLearner_regr_brnn.R . RLearner_regr_bst.R . RLearner_regr_btgp.R . RLearner_regr_btgpllm.R . RLearner_regr_btlm.R . RLearner_regr_cforest.R . RLearner_regr_crs.R . RLearner_regr_ctree.R . RLearner_regr_cubist.R . RLearner_regr_cvglmnet.R . RLearner_regr_earth.R . RLearner_regr_evtree.R . RLearner_regr_featureless.R . RLearner_regr_fgam.R . RLearner_regr_fnn.R . RLearner_regr_frbs.R . RLearner_regr_gamboost.R . RLearner_regr_gausspr.R . RLearner_regr_gbm.R . RLearner_regr_glm.R . RLearner_regr_glmboost.R . RLearner_regr_glmnet.R . RLearner_regr_h2odeeplearning.R . RLearner_regr_h2ogbm.R . RLearner_regr_h2oglm.R . RLearner_regr_h2orandomForest.R . RLearner_regr_kknn.R . RLearner_regr_km.R . RLearner_regr_ksvm.R . RLearner_regr_laGP.R . RLearner_regr_lm.R . RLearner_regr_mars.R . RLearner_regr_mob.R . RLearner_regr_nnet.R . RLearner_regr_pcr.R . RLearner_regr_penalized.R . RLearner_regr_plsr.R . RLearner_regr_randomForest.R . RLearner_regr_ranger.R . RLearner_regr_rpart.R . RLearner_regr_rsm.R . RLearner_regr_rvm.R . RLearner_regr_svm.R . RLearner_regr_xgboost.R . RLearner_surv_cforest.R . RLearner_surv_coxph.R . RLearner_surv_cvglmnet.R . RLearner_surv_gamboost.R . RLearner_surv_gbm.R . RLearner_surv_glmboost.R . RLearner_surv_glmnet.R . RLearner_surv_ranger.R . RLearner_surv_rpart.R . RegrTask.R . RemoveConstantFeaturesWrapper.R . ResampleDesc.R . ResampleInstance.R . ResampleInstances.R . ResamplePrediction.R . ResampleResult.R . ResampleResult_operators.R . SMOTEWrapper.R . StackedLearner.R . SupervisedTask.R . SurvTask.R . Task.R . TaskDesc.R . Task_operators.R . TuneControl.R . TuneControlCMAES.R . TuneControlDesign.R . TuneControlGenSA.R . TuneControlGrid.R . TuneControlIrace.R . TuneControlMBO.R . TuneControlRandom.R . TuneMultiCritControl.R . TuneMultiCritControlGrid.R . TuneMultiCritControlMBO.R . TuneMultiCritControlNSGA2.R . TuneMultiCritControlRandom.R . TuneMultiCritResult.R . TuneResult.R . TuneWrapper.R . UnsupervisedTask.R . WeightedClassesWrapper.R . WrappedModel.R . aggregations.R . analyzeFeatSelResult.R . asROCRPrediction.R . batchmark.R . benchmark.R . benchmark_helpers.R . cache_helpers.R . calculateConfusionMatrix.R . calculateROCMeasures.R . capLargeValues.R . checkAggrBeforeResample.R . checkBMRMeasure.R . checkLearner.R . checkLearnerBeforeTrain.R . checkMeasures.R . checkPrediction.R . checkTargetPreproc.R . checkTask.R . checkTaskSubset.R . checkTunerParset.R . configureMlr.R . convertBMRToRankMatrix.R . convertMLBenchObjToTask.R . convertX.R . createDummyFeatures.R . createSpatialResamplingPlots.R . crossover.R . datasets.R . downsample.R . dropFeatures.R . estimateResidualVariance.R . evalOptimizationState.R . extractFDAFeatures.R . extractFDAFeaturesMethods.R . extractFDAFeaturesWrapper.R . filterFeatures.R . fixDataForLearner.R . friedmanPostHocTestBMR.R . friedmanTestBMR.R . generateCalibration.R . generateFeatureImportance.R . generateFilterValues.R . generateHyperParsEffect.R . generateLearningCurve.R . generatePartialDependence.R . generateThreshVsPerf.R . getCaretParamSet.R . getClassWeightParam.R . getConfMatrix.R . getFeatSelResult.R . getFeatureImportance.R . getFunctionalFeatures.R . getHyperPars.R . getMultilabelBinaryPerformances.R . getNestedTuneResults.R . getOOBPreds.R . getParamSet.R . getResampleExtract.R . getResamplingIndices.R . getTaskConstructorForLearner.R . getTuneResult.R . getTuneThresholdExtra.R . hasFunctionalFeatures.R . helpLearner.R . helpers.R . helpers_FDGAMBoost.R . helpers_fda.R . joinClassLevels.R . learnerArgsToControl.R . learners.R . listLearners.R . listMeasures.R . logFunOpt.R . makeFunctionalData.R . makeLearner.R . makeLearners.R . measures.R . mergeBenchmarkResults.R . mergeSmallFactorLevels.R . mutateBits.R . normalizeFeatures.R . options.R . parallelization.R . performance.R . plotBMRBoxplots.R . plotBMRRanksAsBarChart.R . plotBMRSummary.R . plotCritDifferences.R . plotLearnerPrediction.R . plotResiduals.R . plotTuneMultiCritResult.R . predict.R . predictLearner.R . relativeOverfitting.R . removeConstantFeatures.R . removeHyperPars.R . resample.R . resample_convenience.R . selectFeatures.R . selectFeaturesExhaustive.R . selectFeaturesGA.R . selectFeaturesRandom.R . selectFeaturesSequential.R . setHyperPars.R . setId.R . setPredictThreshold.R . setPredictType.R . setThreshold.R . simplifyMeasureNames.R . smote.R . summarizeColumns.R . summarizeLevels.R . train.R . trainLearner.R . tuneCMAES.R . tuneDesign.R . tuneGenSA.R . tuneGrid.R . tuneIrace.R . tuneMBO.R . tuneMultiCritGrid.R . tuneMultiCritNSGA2.R . tuneMultiCritRandom.R . tuneParams.R . tuneParamsMultiCrit.R . tuneRandom.R . tuneThreshold.R . tunerFitnFun.R . utils.R . utils_imbalancy.R . utils_opt.R . utils_plot.R . zzz.R .  Full mlr package functions and examples
Downloads during the last 30 days
03/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/11Downloads for mlr150200250300350400450500550TrendBars

Today's Hot Picks in Authors and Packages

modeest  
Mode Estimation
Provides estimators of the mode of univariate data or univariate distributions. ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
sparseBC  
Sparse Biclustering of Transposable Data
Implements the sparse biclustering proposal of Tan and Witten (2014), Sparse biclustering of transpo ...
Download / Learn more Package Citations See dependency  
dials  
Tools for Creating Tuning Parameter Values
Many models contain tuning parameters (i.e. parameters that cannot be directly estimated from the d ...
Download / Learn more Package Citations See dependency  
oysteR  
Scans R Projects for Vulnerable Third Party Dependencies
Collects a list of your third party R packages, and scans them with the 'OSS' Index provided by 'So ...
Download / Learn more Package Citations See dependency  
rem  
Relational Event Models (REM)
Calculate endogenous network effects in event sequences and fit relational event models (REM): Using ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA