Other packages > Find by keyword >

mlr  

Machine Learning in R
View on CRAN: Click here


Download and install mlr package within the R console
Install from CRAN:
install.packages("mlr")

Install from Github:
library("remotes")
install_github("cran/mlr")

Install by package version:
library("remotes")
install_version("mlr", "2.19.2")



Attach the package and use:
library("mlr")
Maintained by
Martin Binder
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2013-08-30
Latest Update: 2022-09-29
Description:
Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.
How to cite:
Martin Binder (2013). mlr: Machine Learning in R. R package version 2.19.2, https://cran.r-project.org/web/packages/mlr. Accessed 31 Jan. 2025.
Previous versions and publish date:
1.1-18 (2013-08-30 01:32), 2.0 (2014-07-04 02:25), 2.1 (2014-07-21 20:08), 2.2 (2014-10-29 07:43), 2.3 (2015-02-04 07:43), 2.4 (2015-06-13 00:40), 2.5 (2015-11-20 17:38), 2.6 (2015-11-26 08:38), 2.7 (2015-12-04 15:58), 2.8 (2016-02-13 08:37), 2.9 (2016-08-03 18:03), 2.10 (2017-02-07 10:08), 2.11 (2017-03-15 08:49), 2.12.1 (2018-03-29 12:03), 2.12 (2018-03-11 01:07), 2.13 (2018-08-28 14:30), 2.14.0 (2019-04-26 00:00), 2.15.0 (2019-08-06 17:10), 2.16.0 (2019-11-26 15:50), 2.17.0 (2020-01-10 21:00), 2.17.1 (2020-03-24 11:40), 2.18.0 (2020-10-05 12:20), 2.19.0 (2021-02-22 15:50), 2.19.1 (2022-09-29 15:30)
Other packages that cited mlr R package
View mlr citation profile
Other R packages that mlr depends, imports, suggests or enhances
Complete documentation for mlr
Functions, R codes and Examples using the mlr R package
Some associated functions: Aggregation . BenchmarkResult . ClassifTask . ClusterTask . ConfusionMatrix . CostSensTask . FailureModel . FeatSelControl . FeatSelResult . LearnerProperties . MeasureProperties . MultilabelTask . Prediction . RLearner . RegrTask . ResamplePrediction . ResampleResult . SurvTask . Task . TaskDesc . TuneControl . TuneMultiCritControl . TuneMultiCritResult . TuneResult . addRRMeasure . aggregations . agri.task . analyzeFeatSelResult . asROCRPrediction . batchmark . bc.task . benchmark . bh.task . cache_helpers . calculateConfusionMatrix . calculateROCMeasures . capLargeValues . changeData . checkLearner . checkPredictLearnerOutput . configureMlr . convertBMRToRankMatrix . convertMLBenchObjToTask . costiris.task . createDummyFeatures . createSpatialResamplingPlots . crossover . downsample . dropFeatures . estimateRelativeOverfitting . estimateResidualVariance . extractFDABsignal . extractFDADTWKernel . extractFDAFPCA . extractFDAFeatures . extractFDAFourier . extractFDAMultiResFeatures . extractFDATsfeatures . extractFDAWavelets . filterFeatures . friedmanPostHocTestBMR . friedmanTestBMR . fuelsubset.task . generateCalibrationData . generateCritDifferencesData . generateFeatureImportanceData . generateFilterValuesData . generateHyperParsEffectData . generateLearningCurveData . generatePartialDependenceData . generateThreshVsPerfData . getBMRAggrPerformances . getBMRFeatSelResults . getBMRFilteredFeatures . getBMRLearnerIds . getBMRLearnerShortNames . getBMRLearners . getBMRMeasureIds . getBMRMeasures . getBMRModels . getBMRPerformances . getBMRPredictions . getBMRTaskDescriptions . getBMRTaskDescs . getBMRTaskIds . getBMRTuneResults . getCaretParamSet . getClassWeightParam . getConfMatrix . getDefaultMeasure . getFailureModelDump . getFailureModelMsg . getFeatSelResult . getFeatureImportance . getFeatureImportanceLearner . getFilteredFeatures . getFunctionalFeatures . getHomogeneousEnsembleModels . getHyperPars . getLearnerId . getLearnerModel . getLearnerNote . getLearnerPackages . getLearnerParVals . getLearnerParamSet . getLearnerPredictType . getLearnerShortName . getLearnerType . getMlrOptions . getMultilabelBinaryPerformances . getNestedTuneResultsOptPathDf . getNestedTuneResultsX . getOOBPreds . getOOBPredsLearner . getParamSet . getPredictionDump . getPredictionProbabilities . getPredictionResponse . getPredictionTaskDesc . getProbabilities . getRRDump . getRRPredictionList . getRRPredictions . getRRTaskDesc . getRRTaskDescription . getResamplingIndices . getStackedBaseLearnerPredictions . getTaskClassLevels . getTaskCosts . getTaskData . getTaskDesc . getTaskDescription . getTaskFeatureNames . getTaskFormula . getTaskId . getTaskNFeats . getTaskSize . getTaskTargetNames . getTaskTargets . getTaskType . getTuneResult . getTuneResultOptPath . gunpoint.task . hasFunctionalFeatures . hasProperties . helpLearner . helpLearnerParam . imputations . impute . iris.task . isFailureModel . joinClassLevels . learnerArgsToControl . learners . listFilterEnsembleMethods . listFilterMethods . listLearnerProperties . listLearners . listMeasureProperties . listMeasures . listTaskTypes . lung.task . makeAggregation . makeBaggingWrapper . makeBaseWrapper . makeChainModel . makeClassificationViaRegressionWrapper . makeConstantClassWrapper . makeCostMeasure . makeCostSensClassifWrapper . makeCostSensRegrWrapper . makeCostSensWeightedPairsWrapper . makeCustomResampledMeasure . makeDownsampleWrapper . makeDummyFeaturesWrapper . makeExtractFDAFeatMethod . makeExtractFDAFeatsWrapper . makeFeatSelWrapper . makeFilter . makeFilterEnsemble . makeFilterWrapper . makeFixedHoldoutInstance . makeFunctionalData . makeImputeMethod . makeImputeWrapper . makeLearner . makeLearners . makeMeasure . makeModelMultiplexer . makeModelMultiplexerParamSet . makeMulticlassWrapper . makeMultilabelBinaryRelevanceWrapper . makeMultilabelClassifierChainsWrapper . makeMultilabelDBRWrapper . makeMultilabelNestedStackingWrapper . makeMultilabelStackingWrapper . makeOverBaggingWrapper . makePreprocWrapper . makePreprocWrapperCaret . makeRLearner.classif.fdausc.glm . makeRLearner.classif.fdausc.kernel . makeRLearner.classif.fdausc.np . makeRemoveConstantFeaturesWrapper . makeResampleDesc . makeResampleInstance . makeSMOTEWrapper . makeStackedLearner . makeTaskDesc . makeTaskDescInternal . makeTuneControlCMAES . makeTuneControlDesign . makeTuneControlGenSA . makeTuneControlGrid . makeTuneControlIrace . makeTuneControlMBO . makeTuneControlRandom . makeTuneWrapper . makeUndersampleWrapper . makeWeightedClassesWrapper . makeWrappedModel . measures . mergeBenchmarkResults . mergeSmallFactorLevels . mlr-package . mlrFamilies . mtcars.task . normalizeFeatures . oversample . parallelization . performance . phoneme.task . pid.task . plotBMRBoxplots . plotBMRRanksAsBarChart . plotBMRSummary . plotCalibration . plotCritDifferences . plotFilterValues . plotHyperParsEffect . plotLearnerPrediction . plotLearningCurve . plotPartialDependence . plotROCCurves . plotResiduals . plotThreshVsPerf . plotTuneMultiCritResult . predict.WrappedModel . predictLearner . reduceBatchmarkResults . reextractFDAFeatures . reimpute . removeConstantFeatures . removeHyperPars . resample . selectFeatures . setAggregation . setHyperPars . setHyperPars2 . setId . setLearnerId . setMeasurePars . setPredictThreshold . setPredictType . setThreshold . simplifyMeasureNames . smote . sonar.task . spam.task . spatial.task . subsetTask . summarizeColumns . summarizeLevels . train . trainLearner . tuneParams . tuneParamsMultiCrit . tuneThreshold . wpbc.task . yeast.task . 
Some associated R codes: Aggregation.R . BaggingWrapper.R . BaseEnsemble.R . BaseEnsemble_operators.R . BaseWrapper.R . BaseWrapper_operators.R . BenchmarkResultOrderLevels.R . BenchmarkResult_operators.R . ChainModel.R . ChainModel_operators.R . ClassifTask.R . ClassificationViaRegressionWrapper.R . ClusterTask.R . ConstantClassWrapper.R . CostSensClassifWrapper.R . CostSensRegrWrapper.R . CostSensTask.R . CostSensWeightedPairsWrapper.R . DownsampleWrapper.R . DummyFeaturesWrapper.R . FailureModel.R . FeatSelControl.R . FeatSelControlExhaustive.R . FeatSelControlGA.R . FeatSelControlRandom.R . FeatSelControlSequential.R . FeatSelResult.R . FeatSelWrapper.R . Filter.R . FilterEnsemble.R . FilterWrapper.R . HoldoutInstance_make_fixed.R . HomogeneousEnsemble.R . Impute.R . ImputeMethods.R . ImputeWrapper.R . Learner.R . Learner_operators.R . Learner_properties.R . Measure.R . Measure_colAUC.R . Measure_custom_resampled.R . Measure_make_cost.R . Measure_operators.R . Measure_properties.R . ModelMultiplexer.R . ModelMultiplexerParamSet.R . MulticlassWrapper.R . MultilabelBinaryRelevanceWrapper.R . MultilabelClassifierChainsWrapper.R . MultilabelDBRWrapper.R . MultilabelNestedStackingWrapper.R . MultilabelStackingWrapper.R . MultilabelTask.R . NoFeaturesModel.R . OptControl.R . OptResult.R . OptWrapper.R . OverBaggingWrapper.R . OverUnderSampling.R . OverUndersampleWrapper.R . Prediction.R . Prediction_operators.R . PreprocWrapper.R . PreprocWrapperCaret.R . RLearner.R . RLearner_classif_C50.R . RLearner_classif_FDboost.R . RLearner_classif_IBk.R . RLearner_classif_J48.R . RLearner_classif_JRip.R . RLearner_classif_LiblineaRL1L2SVC.R . RLearner_classif_LiblineaRL1LogReg.R . RLearner_classif_LiblineaRL2L1SVC.R . RLearner_classif_LiblineaRL2LogReg.R . RLearner_classif_LiblineaRL2SVC.R . RLearner_classif_LiblineaRMultiClassSVC.R . RLearner_classif_OneR.R . RLearner_classif_PART.R . RLearner_classif_RRF.R . RLearner_classif_ada.R . RLearner_classif_adaboostm1.R . RLearner_classif_bartMachine.R . RLearner_classif_binomial.R . RLearner_classif_boosting.R . RLearner_classif_bst.R . RLearner_classif_cforest.R . RLearner_classif_clusterSVM.R . RLearner_classif_ctree.R . RLearner_classif_cvglmnet.R . RLearner_classif_dbnDNN.R . RLearner_classif_dcSVM.R . RLearner_classif_earth.R . RLearner_classif_evtree.R . RLearner_classif_fdausc.glm.R . RLearner_classif_fdausc.kernel.R . RLearner_classif_fdausc.knn.R . RLearner_classif_fdausc.np.R . RLearner_classif_featureless.R . RLearner_classif_fgam.R . RLearner_classif_fnn.R . RLearner_classif_gamboost.R . RLearner_classif_gaterSVM.R . RLearner_classif_gausspr.R . RLearner_classif_gbm.R . RLearner_classif_glmboost.R . RLearner_classif_glmnet.R . RLearner_classif_h2odeeplearning.R . RLearner_classif_h2ogbm.R . RLearner_classif_h2oglm.R . RLearner_classif_h2orandomForest.R . RLearner_classif_kknn.R . RLearner_classif_knn.R . RLearner_classif_ksvm.R . RLearner_classif_lda.R . RLearner_classif_logreg.R . RLearner_classif_lssvm.R . RLearner_classif_lvq1.R . RLearner_classif_mda.R . RLearner_classif_mlp.R . RLearner_classif_multinom.R . RLearner_classif_naiveBayes.R . RLearner_classif_neuralnet.R . RLearner_classif_nnTrain.R . RLearner_classif_nnet.R . RLearner_classif_pamr.R . RLearner_classif_penalized.R . RLearner_classif_plr.R . RLearner_classif_plsdaCaret.R . RLearner_classif_probit.R . RLearner_classif_qda.R . RLearner_classif_rFerns.R . RLearner_classif_randomForest.R . RLearner_classif_ranger.R . RLearner_classif_rda.R . RLearner_classif_rotationForest.R . RLearner_classif_rpart.R . RLearner_classif_saeDNN.R . RLearner_classif_sda.R . RLearner_classif_sparseLDA.R . RLearner_classif_svm.R . RLearner_classif_xgboost.R . RLearner_cluster_Cobweb.R . RLearner_cluster_EM.R . RLearner_cluster_FarthestFirst.R . RLearner_cluster_MiniBatchKmeans.R . RLearner_cluster_SimpleKMeans.R . RLearner_cluster_XMeans.R . RLearner_cluster_cmeans.R . RLearner_cluster_dbscan.R . RLearner_cluster_kkmeans.R . RLearner_cluster_kmeans.R . RLearner_multilabel_cforest.R . RLearner_multilabel_rFerns.R . RLearner_regr_FDboost.R . RLearner_regr_GPfit.R . RLearner_regr_IBk.R . RLearner_regr_LiblineaRL2L1SVR.R . RLearner_regr_LiblineaRL2L2SVR.R . RLearner_regr_RRF.R . RLearner_regr_bartMachine.R . RLearner_regr_bcart.R . RLearner_regr_bgp.R . RLearner_regr_bgpllm.R . RLearner_regr_blm.R . RLearner_regr_brnn.R . RLearner_regr_bst.R . RLearner_regr_btgp.R . RLearner_regr_btgpllm.R . RLearner_regr_btlm.R . RLearner_regr_cforest.R . RLearner_regr_crs.R . RLearner_regr_ctree.R . RLearner_regr_cubist.R . RLearner_regr_cvglmnet.R . RLearner_regr_earth.R . RLearner_regr_evtree.R . RLearner_regr_featureless.R . RLearner_regr_fgam.R . RLearner_regr_fnn.R . RLearner_regr_frbs.R . RLearner_regr_gamboost.R . RLearner_regr_gausspr.R . RLearner_regr_gbm.R . RLearner_regr_glm.R . RLearner_regr_glmboost.R . RLearner_regr_glmnet.R . RLearner_regr_h2odeeplearning.R . RLearner_regr_h2ogbm.R . RLearner_regr_h2oglm.R . RLearner_regr_h2orandomForest.R . RLearner_regr_kknn.R . RLearner_regr_km.R . RLearner_regr_ksvm.R . RLearner_regr_laGP.R . RLearner_regr_lm.R . RLearner_regr_mars.R . RLearner_regr_mob.R . RLearner_regr_nnet.R . RLearner_regr_pcr.R . RLearner_regr_penalized.R . RLearner_regr_plsr.R . RLearner_regr_randomForest.R . RLearner_regr_ranger.R . RLearner_regr_rpart.R . RLearner_regr_rsm.R . RLearner_regr_rvm.R . RLearner_regr_svm.R . RLearner_regr_xgboost.R . RLearner_surv_cforest.R . RLearner_surv_coxph.R . RLearner_surv_cvglmnet.R . RLearner_surv_gamboost.R . RLearner_surv_gbm.R . RLearner_surv_glmboost.R . RLearner_surv_glmnet.R . RLearner_surv_ranger.R . RLearner_surv_rpart.R . RegrTask.R . RemoveConstantFeaturesWrapper.R . ResampleDesc.R . ResampleInstance.R . ResampleInstances.R . ResamplePrediction.R . ResampleResult.R . ResampleResult_operators.R . SMOTEWrapper.R . StackedLearner.R . SupervisedTask.R . SurvTask.R . Task.R . TaskDesc.R . Task_operators.R . TuneControl.R . TuneControlCMAES.R . TuneControlDesign.R . TuneControlGenSA.R . TuneControlGrid.R . TuneControlIrace.R . TuneControlMBO.R . TuneControlRandom.R . TuneMultiCritControl.R . TuneMultiCritControlGrid.R . TuneMultiCritControlMBO.R . TuneMultiCritControlNSGA2.R . TuneMultiCritControlRandom.R . TuneMultiCritResult.R . TuneResult.R . TuneWrapper.R . UnsupervisedTask.R . WeightedClassesWrapper.R . WrappedModel.R . aggregations.R . analyzeFeatSelResult.R . asROCRPrediction.R . batchmark.R . benchmark.R . benchmark_helpers.R . cache_helpers.R . calculateConfusionMatrix.R . calculateROCMeasures.R . capLargeValues.R . checkAggrBeforeResample.R . checkBMRMeasure.R . checkLearner.R . checkLearnerBeforeTrain.R . checkMeasures.R . checkPrediction.R . checkTargetPreproc.R . checkTask.R . checkTaskSubset.R . checkTunerParset.R . configureMlr.R . convertBMRToRankMatrix.R . convertMLBenchObjToTask.R . convertX.R . createDummyFeatures.R . createSpatialResamplingPlots.R . crossover.R . datasets.R . downsample.R . dropFeatures.R . estimateResidualVariance.R . evalOptimizationState.R . extractFDAFeatures.R . extractFDAFeaturesMethods.R . extractFDAFeaturesWrapper.R . filterFeatures.R . fixDataForLearner.R . friedmanPostHocTestBMR.R . friedmanTestBMR.R . generateCalibration.R . generateFeatureImportance.R . generateFilterValues.R . generateHyperParsEffect.R . generateLearningCurve.R . generatePartialDependence.R . generateThreshVsPerf.R . getCaretParamSet.R . getClassWeightParam.R . getConfMatrix.R . getFeatSelResult.R . getFeatureImportance.R . getFunctionalFeatures.R . getHyperPars.R . getMultilabelBinaryPerformances.R . getNestedTuneResults.R . getOOBPreds.R . getParamSet.R . getResampleExtract.R . getResamplingIndices.R . getTaskConstructorForLearner.R . getTuneResult.R . getTuneThresholdExtra.R . hasFunctionalFeatures.R . helpLearner.R . helpers.R . helpers_FDGAMBoost.R . helpers_fda.R . joinClassLevels.R . learnerArgsToControl.R . learners.R . listLearners.R . listMeasures.R . logFunOpt.R . makeFunctionalData.R . makeLearner.R . makeLearners.R . measures.R . mergeBenchmarkResults.R . mergeSmallFactorLevels.R . mutateBits.R . normalizeFeatures.R . options.R . parallelization.R . performance.R . plotBMRBoxplots.R . plotBMRRanksAsBarChart.R . plotBMRSummary.R . plotCritDifferences.R . plotLearnerPrediction.R . plotResiduals.R . plotTuneMultiCritResult.R . predict.R . predictLearner.R . relativeOverfitting.R . removeConstantFeatures.R . removeHyperPars.R . resample.R . resample_convenience.R . selectFeatures.R . selectFeaturesExhaustive.R . selectFeaturesGA.R . selectFeaturesRandom.R . selectFeaturesSequential.R . setHyperPars.R . setId.R . setPredictThreshold.R . setPredictType.R . setThreshold.R . simplifyMeasureNames.R . smote.R . summarizeColumns.R . summarizeLevels.R . train.R . trainLearner.R . tuneCMAES.R . tuneDesign.R . tuneGenSA.R . tuneGrid.R . tuneIrace.R . tuneMBO.R . tuneMultiCritGrid.R . tuneMultiCritNSGA2.R . tuneMultiCritRandom.R . tuneParams.R . tuneParamsMultiCrit.R . tuneRandom.R . tuneThreshold.R . tunerFitnFun.R . utils.R . utils_imbalancy.R . utils_opt.R . utils_plot.R . zzz.R .  Full mlr package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

pim  
Fit Probabilistic Index Models
Fit a probabilistic index model as described in Thas et al, 2012: ...
Download / Learn more Package Citations See dependency  
GEEmediate  
Mediation Analysis for Generalized Linear Models Using the Difference Method
Causal mediation analysis for a single exposure/treatment and a single mediator, both allowed to be ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
nlpred  
Estimators of Non-Linear Cross-Validated Risks Optimized for Small Samples
Methods for obtaining improved estimates of non-linear cross-validated risks are obtained using targ ...
Download / Learn more Package Citations See dependency  

23,580

R Packages

204,057

Dependencies

63,980

Author Associations

23,581

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA