Other packages > Find by keyword >

mlim  

Single and Multiple Imputation with Automated Machine Learning
View on CRAN: Click here


Download and install mlim package within the R console
Install from CRAN:
install.packages("mlim")

Install from Github:
library("remotes")
install_github("cran/mlim")

Install by package version:
library("remotes")
install_version("mlim", "0.3.0")



Attach the package and use:
library("mlim")
Maintained by
E. F. Haghish
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2022-08-13
Latest Update: 2022-12-16
Description:
Machine learning algorithms have been used for performing single missing data imputation and most recently, multiple imputations. However, this is the first attempt for using automated machine learning algorithms for performing both single and multiple imputation. Automated machine learning is a procedure for fine-tuning the model automatic, performing a random search for a model that results in less error, without overfitting the data. The main idea is to allow the model to set its own parameters for imputing each variable separately instead of setting fixed predefined parameters to impute all variables of the dataset. Using automated machine learning, the package fine-tunes an Elastic Net (default) or Gradient Boosting, Random Forest, Deep Learning, Extreme Gradient Boosting, or Stacked Ensemble machine learning model (from one or a combination of other supported algorithms) for imputing the missing observations. This procedure has been implemented for the first time by this package and is expected to outperform other packages for imputing missing data that do not fine-tune their models. The multiple imputation is implemented via bootstrapping without letting the duplicated observations to harm the cross-validation procedure, which is the way imputed variables are evaluated. Most notably, the package implements automated procedure for handling imputing imbalanced data (class rarity problem), which happens when a factor variable has a level that is far more prevalent than the other(s). This is known to result in biased predictions, hence, biased imputation of missing data. However, the autobalancing procedure ensures that instead of focusing on maximizing accuracy (classification error) in imputing factor variables, a fairer procedure and imputation method is practiced.
How to cite:
E. F. Haghish (2022). mlim: Single and Multiple Imputation with Automated Machine Learning. R package version 0.3.0, https://cran.r-project.org/web/packages/mlim. Accessed 04 Jan. 2025.
Previous versions and publish date:
0.0.1 (2022-08-13 14:30), 0.0.2 (2022-08-15 10:10), 0.0.9 (2022-09-07 09:50), 0.2.0 (2022-09-26 11:00)
Other packages that cited mlim R package
View mlim citation profile
Other R packages that mlim depends, imports, suggests or enhances
Complete documentation for mlim
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

EffectLiteR  
Average and Conditional Effects
Use structural equation modeling to estimate average and conditional effects of a treatment variabl ...
Download / Learn more Package Citations See dependency  
ravedash  
Dashboard System for Reproducible Visualization of "iEEG"
Dashboard system to display the analysis results produced by 'RAVE' (Magnotti J.F., Wang Z., Beauch ...
Download / Learn more Package Citations See dependency  
VARMER  
Variational Merging
A new mathematical formulation to merge observed data with gridded images of environmental variables ...
Download / Learn more Package Citations See dependency  
epubr  
Read EPUB File Metadata and Text
Provides functions supporting the reading and parsing of internal e-book content from EPUB files. T ...
Download / Learn more Package Citations See dependency  
gggibbous  
Moon Charts, a Pie Chart Alternative
Moon charts are like pie charts except that the proportions are shown as crescent or gibbous portio ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

23,440

R Packages

202,297

Dependencies

63,567

Author Associations

23,434

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA