Other packages > Find by keyword >

mice  

Multivariate Imputation by Chained Equations
View on CRAN: Click here


Download and install mice package within the R console
Install from CRAN:
install.packages("mice")

Install from Github:
library("remotes")
install_github("cran/mice")

Install by package version:
library("remotes")
install_version("mice", "3.17.0")



Attach the package and use:
library("mice")
Maintained by
Stef van Buuren
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2006-04-04
Latest Update: 2023-06-05
Description:
Multiple imputation using Fully Conditional Specification (FCS) implemented by the MICE algorithm as described in Van Buuren and Groothuis-Oudshoorn (2011) . Each variable has its own imputation model. Built-in imputation models are provided for continuous data (predictive mean matching, normal), binary data (logistic regression), unordered categorical data (polytomous logistic regression) and ordered categorical data (proportional odds). MICE can also impute continuous two-level data (normal model, pan, second-level variables). Passive imputation can be used to maintain consistency between variables. Various diagnostic plots are available to inspect the quality of the imputations.
How to cite:
Stef van Buuren (2006). mice: Multivariate Imputation by Chained Equations. R package version 3.17.0, https://cran.r-project.org/web/packages/mice. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.14 (2006-04-04 11:03), 1.15 (2007-01-10 11:07), 1.16 (2009-02-19 14:26), 1.21 (2009-03-17 09:13), 2.0 (2009-08-27 12:42), 2.1 (2009-09-18 22:25), 2.2 (2010-01-14 12:58), 2.3 (2010-02-14 15:44), 2.4 (2010-10-18 08:34), 2.5 (2011-01-06 21:29), 2.6 (2011-03-04 15:50), 2.7 (2011-03-16 17:21), 2.8 (2011-03-26 16:44), 2.9 (2011-09-01 10:55), 2.10 (2011-09-15 09:26), 2.11 (2011-11-22 09:45), 2.12 (2012-03-25 22:10), 2.13 (2012-07-04 08:06), 2.14 (2013-03-19 23:17), 2.15 (2013-04-03 01:18), 2.16 (2013-04-27 08:51), 2.17 (2013-05-12 13:33), 2.18 (2013-08-01 01:07), 2.20 (2014-02-04 00:09), 2.21 (2014-02-05 16:55), 2.22 (2014-06-11 23:31), 2.25 (2015-11-09 17:16), 2.30 (2017-02-18 22:39), 2.46.0 (2017-10-24 09:29), 3.0.0 (2018-05-26 00:43), 3.1.0 (2018-06-20 07:28), 3.2.0 (2018-07-24 11:40), 3.3.0 (2018-07-27 12:10), 3.4.0 (2019-03-07 10:20), 3.5.0 (2019-05-13 23:20), 3.6.0 (2019-07-10 10:00), 3.7.0 (2019-12-13 15:50), 3.8.0 (2020-02-21 19:20), 3.9.0 (2020-05-14 17:20), 3.10.0.1 (2020-08-02 11:32), 3.10.0 (2020-07-13 15:50), 3.11.0 (2020-08-05 18:50), 3.12.0 (2020-11-14 16:00), 3.13.0 (2021-01-27 11:40), 3.14.0 (2021-11-24 14:00), 3.15.0 (2022-11-19 14:00), 3.16.0 (2023-06-05 16:40)
Other packages that cited mice R package
View mice citation profile
Other R packages that mice depends, imports, suggests or enhances
Complete documentation for mice
Functions, R codes and Examples using the mice R package
Some associated functions: D1 . D2 . D3 . ampute.continuous . ampute.default.freq . ampute.default.odds . ampute.default.patterns . ampute.default.type . ampute.default.weights . ampute.discrete . ampute.mcar . ampute . anova . appendbreak . as.mids . as.mira . as.mitml.result . boys . brandsma . bwplot.mads . bwplot.mids . cbind . cc . cci . complete.mids . construct.blocks . convergence . densityplot.mids . employee . estimice . extend.formula . extend.formulas . extractBS . fdd . fdgs . fico . filter.mids . fix.coef . flux . fluxplot . futuremice . getfit . getqbar . glance.mipo . glm.mids . ibind . ic . ici . ifdo . is.mads . is.mids . is.mipo . is.mira . is.mitml.result . leiden85 . lm.mids . mads-class . make.blocks . make.blots . make.formulas . make.method . make.post . make.predictorMatrix . make.visitSequence . make.where . mammalsleep . matchindex . mcar . md.pairs . md.pattern . mdc . mice.impute.2l.bin . mice.impute.2l.lmer . mice.impute.2l.norm . mice.impute.2l.pan . mice.impute.2lonly.mean . mice.impute.2lonly.norm . mice.impute.2lonly.pmm . mice.impute.cart . mice.impute.jomoImpute . mice.impute.lasso.logreg . mice.impute.lasso.norm . mice.impute.lasso.select.logreg . mice.impute.lasso.select.norm . mice.impute.lda . mice.impute.logreg.boot . mice.impute.logreg . mice.impute.mean . mice.impute.midastouch . mice.impute.mnar . mice.impute.mpmm . mice.impute.norm.boot . mice.impute.norm.nob . mice.impute.norm . mice.impute.norm.predict . mice.impute.panImpute . mice.impute.passive . mice.impute.pmm . mice.impute.polr . mice.impute.polyreg . mice.impute.quadratic . mice.impute.rf . mice.impute.ri . mice.impute.sample . mice.mids . mice . mice.theme . mids-class . mids2mplus . mids2spss . mipo . mira-class . mnar_demo_data . name.blocks . name.formulas . ncc . nelsonaalen . nhanes . nhanes2 . nic . nimp . norm.draw . parlmice . pattern . plot.mids . pmm.match . pool.compare . pool . pool.r.squared . pool.scalar . popmis . pops . potthoffroy . print.mads . print . quickpred . reexports . selfreport . squeeze . stripplot.mids . summary . supports.transparent . tbc . tidy.mipo . toenail . toenail2 . version . walking . windspeed . with.mids . xyplot.mads . xyplot.mids . 
Some associated R codes: D1.R . D2.R . D3.R . RcppExports.R . ampute.R . ampute.continuous.R . ampute.default.R . ampute.discrete.R . ampute.mcar.R . anova.R . as.R . auxiliary.R . barnard.rubin.R . blocks.R . blots.R . boys.R . brandsma.R . bwplot.R . bwplot.mads.R . cbind.R . cc.R . cci.R . check.R . check.deprecated.R . complete.R . convergence.R . densityplot.R . design.R . df.residual.R . edit.setup.R . employee.R . fdd.R . fdgs.R . filter.R . fix.coef.R . flux.R . formula.R . futuremice.R . generics.R . get.df.R . getfit.R . handles.R . ibind.R . imports.R . initialize.chain.R . initialize.imp.R . install.on.demand.R . internal.R . is.R . leiden85.R . lm.R . mads.R . mammalsleep.R . mcar.R . md.pairs.R . md.pattern.R . mdc.R . method.R . mice-package.R . mice.R . mice.impute.2l.bin.R . mice.impute.2l.lmer.R . mice.impute.2l.norm.R . mice.impute.2l.pan.R . mice.impute.2lonly.mean.R . mice.impute.2lonly.norm.R . mice.impute.2lonly.pmm.R . mice.impute.cart.R . mice.impute.jomoImpute.R . mice.impute.lasso.logreg.R . mice.impute.lasso.norm.R . mice.impute.lasso.select.logreg.R . mice.impute.lasso.select.norm.R . mice.impute.lda.R . mice.impute.logreg.R . mice.impute.mean.R . mice.impute.midastouch.R . mice.impute.mnar.logreg.R . mice.impute.mnar.norm.R . mice.impute.mpmm.R . mice.impute.norm.R . mice.impute.norm.boot.R . mice.impute.norm.nob.R . mice.impute.norm.predict.R . mice.impute.panImpute.R . mice.impute.passive.R . mice.impute.pmm.R . mice.impute.polr.R . mice.impute.polyreg.R . mice.impute.quadratic.R . mice.impute.rf.R . mice.impute.ri.R . mice.impute.sample.R . mice.mids.R . mice.theme.R . mids.R . mids2mplus.R . mids2spss.R . mipo.R . mira.R . mnar_demo_data.R . ncc.R . nelsonaalen.R . nhanes.R . nhanes2.R . nimp.R . parlmice.R . parse.ums.R . pattern1.R . plot.R . pool.R . pool.compare.R . pool.r.squared.R . pool.scalar.R . popmis.R . pops.R . post.R . potthoffroy.R . predictorMatrix.R . print.R . quickpred.R . rbind.R . rm.whitespace.R . sampler.R . selfreport.R . squeeze.R . stripplot.R . summary.R . supports.transparent.R . tbc.R . tidiers.R . toenail.R . toenail2.R . validate.arguments.R . visitSequence.R . walking.R . where.R . windspeed.R . with.R . xyplot.R . xyplot.mads.R . zzz.R .  Full mice package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA