Other packages > Find by keyword >

mice  

Multivariate Imputation by Chained Equations
View on CRAN: Click here


Download and install mice package within the R console
Install from CRAN:
install.packages("mice")

Install from Github:
library("remotes")
install_github("cran/mice")

Install by package version:
library("remotes")
install_version("mice", "3.17.0")



Attach the package and use:
library("mice")
Maintained by
Stef van Buuren
[Scholar Profile | Author Map]
First Published: 2006-04-04
Latest Update: 2023-06-05
Description:
Multiple imputation using Fully Conditional Specification (FCS) implemented by the MICE algorithm as described in Van Buuren and Groothuis-Oudshoorn (2011) . Each variable has its own imputation model. Built-in imputation models are provided for continuous data (predictive mean matching, normal), binary data (logistic regression), unordered categorical data (polytomous logistic regression) and ordered categorical data (proportional odds). MICE can also impute continuous two-level data (normal model, pan, second-level variables). Passive imputation can be used to maintain consistency between variables. Various diagnostic plots are available to inspect the quality of the imputations.
How to cite:
Stef van Buuren (2006). mice: Multivariate Imputation by Chained Equations. R package version 3.17.0, https://cran.r-project.org/web/packages/mice. Accessed 13 Apr. 2025.
Previous versions and publish date:
1.14 (2006-04-04 11:03), 1.15 (2007-01-10 11:07), 1.16 (2009-02-19 14:26), 1.21 (2009-03-17 09:13), 2.0 (2009-08-27 12:42), 2.1 (2009-09-18 22:25), 2.2 (2010-01-14 12:58), 2.3 (2010-02-14 15:44), 2.4 (2010-10-18 08:34), 2.5 (2011-01-06 21:29), 2.6 (2011-03-04 15:50), 2.7 (2011-03-16 17:21), 2.8 (2011-03-26 16:44), 2.9 (2011-09-01 10:55), 2.10 (2011-09-15 09:26), 2.11 (2011-11-22 09:45), 2.12 (2012-03-25 22:10), 2.13 (2012-07-04 08:06), 2.14 (2013-03-19 23:17), 2.15 (2013-04-03 01:18), 2.16 (2013-04-27 08:51), 2.17 (2013-05-12 13:33), 2.18 (2013-08-01 01:07), 2.20 (2014-02-04 00:09), 2.21 (2014-02-05 16:55), 2.22 (2014-06-11 23:31), 2.25 (2015-11-09 17:16), 2.30 (2017-02-18 22:39), 2.46.0 (2017-10-24 09:29), 3.0.0 (2018-05-26 00:43), 3.1.0 (2018-06-20 07:28), 3.2.0 (2018-07-24 11:40), 3.3.0 (2018-07-27 12:10), 3.4.0 (2019-03-07 10:20), 3.5.0 (2019-05-13 23:20), 3.6.0 (2019-07-10 10:00), 3.7.0 (2019-12-13 15:50), 3.8.0 (2020-02-21 19:20), 3.9.0 (2020-05-14 17:20), 3.10.0.1 (2020-08-02 11:32), 3.10.0 (2020-07-13 15:50), 3.11.0 (2020-08-05 18:50), 3.12.0 (2020-11-14 16:00), 3.13.0 (2021-01-27 11:40), 3.14.0 (2021-11-24 14:00), 3.15.0 (2022-11-19 14:00), 3.16.0 (2023-06-05 16:40)
Other packages that cited mice R package
View mice citation profile
Other R packages that mice depends, imports, suggests or enhances
Complete documentation for mice
Functions, R codes and Examples using the mice R package
Some associated functions: D1 . D2 . D3 . ampute.continuous . ampute.default.freq . ampute.default.odds . ampute.default.patterns . ampute.default.type . ampute.default.weights . ampute.discrete . ampute.mcar . ampute . anova . appendbreak . as.mids . as.mira . as.mitml.result . boys . brandsma . bwplot.mads . bwplot.mids . cbind . cc . cci . complete.mids . construct.blocks . convergence . densityplot.mids . employee . estimice . extend.formula . extend.formulas . extractBS . fdd . fdgs . fico . filter.mids . fix.coef . flux . fluxplot . futuremice . getfit . getqbar . glance.mipo . glm.mids . ibind . ic . ici . ifdo . is.mads . is.mids . is.mipo . is.mira . is.mitml.result . leiden85 . lm.mids . mads-class . make.blocks . make.blots . make.formulas . make.method . make.post . make.predictorMatrix . make.visitSequence . make.where . mammalsleep . matchindex . mcar . md.pairs . md.pattern . mdc . mice.impute.2l.bin . mice.impute.2l.lmer . mice.impute.2l.norm . mice.impute.2l.pan . mice.impute.2lonly.mean . mice.impute.2lonly.norm . mice.impute.2lonly.pmm . mice.impute.cart . mice.impute.jomoImpute . mice.impute.lasso.logreg . mice.impute.lasso.norm . mice.impute.lasso.select.logreg . mice.impute.lasso.select.norm . mice.impute.lda . mice.impute.logreg.boot . mice.impute.logreg . mice.impute.mean . mice.impute.midastouch . mice.impute.mnar . mice.impute.mpmm . mice.impute.norm.boot . mice.impute.norm.nob . mice.impute.norm . mice.impute.norm.predict . mice.impute.panImpute . mice.impute.passive . mice.impute.pmm . mice.impute.polr . mice.impute.polyreg . mice.impute.quadratic . mice.impute.rf . mice.impute.ri . mice.impute.sample . mice.mids . mice . mice.theme . mids-class . mids2mplus . mids2spss . mipo . mira-class . mnar_demo_data . name.blocks . name.formulas . ncc . nelsonaalen . nhanes . nhanes2 . nic . nimp . norm.draw . parlmice . pattern . plot.mids . pmm.match . pool.compare . pool . pool.r.squared . pool.scalar . popmis . pops . potthoffroy . print.mads . print . quickpred . reexports . selfreport . squeeze . stripplot.mids . summary . supports.transparent . tbc . tidy.mipo . toenail . toenail2 . version . walking . windspeed . with.mids . xyplot.mads . xyplot.mids . 
Some associated R codes: D1.R . D2.R . D3.R . RcppExports.R . ampute.R . ampute.continuous.R . ampute.default.R . ampute.discrete.R . ampute.mcar.R . anova.R . as.R . auxiliary.R . barnard.rubin.R . blocks.R . blots.R . boys.R . brandsma.R . bwplot.R . bwplot.mads.R . cbind.R . cc.R . cci.R . check.R . check.deprecated.R . complete.R . convergence.R . densityplot.R . design.R . df.residual.R . edit.setup.R . employee.R . fdd.R . fdgs.R . filter.R . fix.coef.R . flux.R . formula.R . futuremice.R . generics.R . get.df.R . getfit.R . handles.R . ibind.R . imports.R . initialize.chain.R . initialize.imp.R . install.on.demand.R . internal.R . is.R . leiden85.R . lm.R . mads.R . mammalsleep.R . mcar.R . md.pairs.R . md.pattern.R . mdc.R . method.R . mice-package.R . mice.R . mice.impute.2l.bin.R . mice.impute.2l.lmer.R . mice.impute.2l.norm.R . mice.impute.2l.pan.R . mice.impute.2lonly.mean.R . mice.impute.2lonly.norm.R . mice.impute.2lonly.pmm.R . mice.impute.cart.R . mice.impute.jomoImpute.R . mice.impute.lasso.logreg.R . mice.impute.lasso.norm.R . mice.impute.lasso.select.logreg.R . mice.impute.lasso.select.norm.R . mice.impute.lda.R . mice.impute.logreg.R . mice.impute.mean.R . mice.impute.midastouch.R . mice.impute.mnar.logreg.R . mice.impute.mnar.norm.R . mice.impute.mpmm.R . mice.impute.norm.R . mice.impute.norm.boot.R . mice.impute.norm.nob.R . mice.impute.norm.predict.R . mice.impute.panImpute.R . mice.impute.passive.R . mice.impute.pmm.R . mice.impute.polr.R . mice.impute.polyreg.R . mice.impute.quadratic.R . mice.impute.rf.R . mice.impute.ri.R . mice.impute.sample.R . mice.mids.R . mice.theme.R . mids.R . mids2mplus.R . mids2spss.R . mipo.R . mira.R . mnar_demo_data.R . ncc.R . nelsonaalen.R . nhanes.R . nhanes2.R . nimp.R . parlmice.R . parse.ums.R . pattern1.R . plot.R . pool.R . pool.compare.R . pool.r.squared.R . pool.scalar.R . popmis.R . pops.R . post.R . potthoffroy.R . predictorMatrix.R . print.R . quickpred.R . rbind.R . rm.whitespace.R . sampler.R . selfreport.R . squeeze.R . stripplot.R . summary.R . supports.transparent.R . tbc.R . tidiers.R . toenail.R . toenail2.R . validate.arguments.R . visitSequence.R . walking.R . where.R . windspeed.R . with.R . xyplot.R . xyplot.mads.R . zzz.R .  Full mice package functions and examples
Downloads during the last 30 days
03/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/12Downloads for mice200022002400260028003000320034003600380040004200TrendBars

Today's Hot Picks in Authors and Packages

ggprism  
A 'ggplot2' Extension Inspired by 'GraphPad Prism'
Provides various themes, palettes, and other functions that are used to customise ggplots to look l ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
MLeval  
Machine Learning Model Evaluation
Straightforward and detailed evaluation of machine learning models. 'MLeval' can produce receiver op ...
Download / Learn more Package Citations See dependency  
SPOTMisc  
Misc Extensions for the "SPOT" Package
Implements additional models, simulation tools, and interfaces as extensions to 'SPOT'. It provides ...
Download / Learn more Package Citations See dependency  
COMPoissonReg  
Conway-Maxwell Poisson (COM-Poisson) Regression
Fit Conway-Maxwell Poisson (COM-Poisson or CMP) regression models to count data (Sellers & Shmueli, ...
Download / Learn more Package Citations See dependency  
optimParallel  
Parallel Version of the L-BFGS-B Optimization Method
Provides a parallel version of the L-BFGS-B method of optim(). The main function of the package is o ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA