Other packages > Find by keyword >

metrica  

Prediction Performance Metrics
View on CRAN: Click here


Download and install metrica package within the R console
Install from CRAN:
install.packages("metrica")

Install from Github:
library("remotes")
install_github("cran/metrica")

Install by package version:
library("remotes")
install_version("metrica", "2.1.0")



Attach the package and use:
library("metrica")
Maintained by
Adrian A. Correndo
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2022-05-12
Latest Update: 2023-04-14
Description:
A compilation of more than 80 functions designed to quantitatively and visually evaluate prediction performance of regression (continuous variables) and classification (categorical variables) of point-forecast models (e.g. APSIM, DSSAT, DNDC, supervised Machine Learning). For regression, it includes functions to generate plots (scatter, tiles, density, & Bland-Altman plot), and to estimate error metrics (e.g. MBE, MAE, RMSE), error decomposition (e.g. lack of accuracy-precision), model efficiency (e.g. NSE, E1, KGE), indices of agreement (e.g. d, RAC), goodness of fit (e.g. r, R2), adjusted correlation coefficients (e.g. CCC, dcorr), symmetric regression coefficients (intercept, slope), and mean absolute scaled error (MASE) for time series predictions. For classification (binomial and multinomial), it offers functions to generate and plot confusion matrices, and to estimate performance metrics such as accuracy, precision, recall, specificity, F-score, Cohen's Kappa, G-mean, and many more. For more details visit the vignettes .
How to cite:
Adrian A. Correndo (2022). metrica: Prediction Performance Metrics. R package version 2.1.0, https://cran.r-project.org/web/packages/metrica. Accessed 18 Feb. 2025.
Previous versions and publish date:
1.2.3 (2022-05-12 10:40), 2.0.0 (2022-07-05 09:30), 2.0.1 (2022-07-24 09:20), 2.0.2 (2023-04-03 00:30), 2.0.3 (2023-04-14 06:50)
Other packages that cited metrica R package
View metrica citation profile
Other R packages that metrica depends, imports, suggests or enhances
Complete documentation for metrica
Functions, R codes and Examples using the metrica R package
Some associated functions: AC . AUC_roc . B0_sma . B1_sma . CCC . E1 . Erel . KGE . LCS . MAE . MAPE . MASE . MBE . MIC . MLA . MLP . MSE . NSE . PAB . PBE . PLA . PLP . PPB . R2 . RAC . RAE . RMAE . RMLA . RMLP . RMSE . RRMSE . RSE . RSR . RSS . SB . SDSD . SMAPE . TSS . Ub . Uc . Ue . Xa . accuracy . agf . balacc . barley . bland_altman_plot . bmi . chickpea . confusion_matrix . csi . d . d1 . d1r . dcorr . deltap . density_plot . error_rate . fmi . fscore . gmean . import_apsim_db . import_apsim_out . iqRMSE . khat . lambda . land_cover . likelihood_ratios . maize_phenology . mcc . metrica-package . metrics_summary . npv . precision . prevalence . r . recall . scatter_plot . sorghum . specificity . tiles_plot . uSD . var_u . wheat . 
Some associated R codes: class_AUC_roc.R . class_accuracy.R . class_agf.R . class_balacc.R . class_bmi.R . class_confusion_matrix.R . class_csi.R . class_deltap.R . class_error_rate.R . class_fmi.R . class_fscore.R . class_gmean.R . class_khat.R . class_likelihood_ratios.R . class_mcc.R . class_npv.R . class_precision.R . class_prevalence.R . class_recall.R . class_specificity.R . data.R . import_apsim_db.R . import_apsim_out.R . metrica-package.R . metrics_summary.R . plot_bland_altman.R . plot_density.R . plot_scatter.R . plot_tiles.R . reg_AC.R . reg_B0_sma.R . reg_B1_sma.R . reg_CCC.R . reg_E1.R . reg_Erel.R . reg_KGE.R . reg_LCS.R . reg_MAE.R . reg_MAPE.R . reg_MASE.R . reg_MBE.R . reg_MIC.R . reg_MLA.R . reg_MLP.R . reg_MSE.R . reg_NSE.R . reg_PAB.R . reg_PBE.R . reg_PLA.R . reg_PLP.R . reg_PPB.R . reg_R2.R . reg_RAC.R . reg_RAE.R . reg_RMAE.R . reg_RMLA.R . reg_RMLP.R . reg_RMSE.R . reg_RRMSE.R . reg_RSE.R . reg_RSR.R . reg_RSS.R . reg_SB.R . reg_SDSD.R . reg_SMAPE.R . reg_TSS.R . reg_Ub.R . reg_Uc.R . reg_Ue.R . reg_Xa.R . reg_d.R . reg_d1.R . reg_d1r.R . reg_dcorr.R . reg_iqRMSE.R . reg_lambda.R . reg_r.R . reg_uSD.R . reg_var_u.R .  Full metrica package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

RobustBayesianCopas  
Robust Bayesian Copas Selection Model
Fits the robust Bayesian Copas (RBC) selection model of Bai et al. (2020) for cor ...
Download / Learn more Package Citations See dependency  
fclust  
Fuzzy Clustering
Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visuali ...
Download / Learn more Package Citations See dependency  
MOSS  
Multi-Omic Integration via Sparse Singular Value Decomposition
High dimensionality, noise and heterogeneity among samples and features challenge the omic integrat ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
readxlsb  
Read 'Excel' Binary (.xlsb) Workbooks
Import data from 'Excel' binary (.xlsb) workbooks into R. ...
Download / Learn more Package Citations See dependency  
OptGS  
Near-Optimal Group-Sequential Designs for Continuous Outcomes
Optimal group-sequential designs minimise some function of the expected and maximum sample size whil ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA