Other packages > Find by keyword >

mdmb  

Model Based Treatment of Missing Data
View on CRAN: Click here


Download and install mdmb package within the R console
Install from CRAN:
install.packages("mdmb")

Install from Github:
library("remotes")
install_github("cran/mdmb")

Install by package version:
library("remotes")
install_version("mdmb", "1.9-22")



Attach the package and use:
library("mdmb")
Maintained by
Alexander Robitzsch
[Scholar Profile | Author Map]
First Published: 2017-01-26
Latest Update: 2023-02-28
Description:
Contains model-based treatment of missing data for regression models with missing values in covariates or the dependent variable using maximum likelihood or Bayesian estimation (Ibrahim et al., 2005; ; Luedtke, Robitzsch, & West, 2020a, 2020b; ). The regression model can be nonlinear (e.g., interaction effects, quadratic effects or B-spline functions). Multilevel models with missing data in predictors are available for Bayesian estimation. Substantive-model compatible multiple imputation can be also conducted.
How to cite:
Alexander Robitzsch (2017). mdmb: Model Based Treatment of Missing Data. R package version 1.9-22, https://cran.r-project.org/web/packages/mdmb. Accessed 07 Apr. 2025.
Previous versions and publish date:
0.1-0 (2017-01-26 12:08), 0.2-0 (2017-02-07 16:23), 0.3-11 (2017-07-12 21:14), 0.4-15 (2017-08-20 14:40), 0.5-27 (2018-01-22 11:47), 0.6-17 (2018-02-16 12:10), 0.7-19 (2018-04-24 19:20), 0.8-47 (2018-07-09 19:10), 0.9-43 (2018-08-08 16:30), 0.10-13 (2018-09-12 14:40), 0.11-7 (2018-10-16 21:10), 1.0-18 (2018-11-06 19:10), 1.1-51 (2019-01-07 18:50), 1.2-4 (2019-01-11 13:20), 1.3-18 (2019-04-16 13:53), 1.4-12 (2020-05-12 19:11), 1.5-8 (2021-01-21 16:10), 1.6-5 (2022-05-17 16:00), 1.7-22 (2023-02-17 16:10), 1.8-7 (2023-02-28 23:02)
Other packages that cited mdmb R package
View mdmb citation profile
Other R packages that mdmb depends, imports, suggests or enhances
Complete documentation for mdmb
Functions, R codes and Examples using the mdmb R package
Some associated functions: data.mb . eval_prior_list . frm . mdmb-package . mdmb_regression . offset_values_extract . oprobit_dist . remove_NA_data_frame . yjt_dist . 
Some associated R codes: RcppExports.R . bc_antitrafo.R . bc_trafo.R . bc_trafo_derivative.R . bct_regression.R . coef.mdmb.R . dbct_scaled.R . dbct_scaled_mdmb_regression_wrapper.R . doprobit.R . dt_scaled.R . dyjt_scaled.R . dyjt_scaled_log_multiplication.R . eval_prior_list.R . eval_prior_list_gradient_log.R . eval_prior_list_sumlog.R . fit_bct_scaled.R . fit_mdmb_distribution.R . fit_mdmb_distribution_extract_results.R . fit_mdmb_distribution_logLik_extract.R . fit_mdmb_distribution_remove_NA.R . fit_mdmb_distribution_summary.R . fit_mdmb_distribution_summary_table.R . fit_oprobit.R . fit_t_scaled.R . fit_yjt_scaled.R . frm2datlist.R . frm_append_list.R . frm_check_predictor_matrix.R . frm_define_model_R_function.R . frm_define_model_R_function_include_maxiter.R . frm_descriptives_variables.R . frm_em.R . frm_em_avcov.R . frm_em_calc_likelihood.R . frm_em_calc_likelihood_estimate_model.R . frm_em_calc_total_likelihood.R . frm_em_calc_update_observed_likelihood.R . frm_em_ic.R . frm_em_include_coef_inits.R . frm_em_linreg_density_extend_args.R . frm_em_score_function_prepare_model.R . frm_em_summary_print_nodes.R . frm_estimate_model_create_R_args.R . frm_fb.R . frm_fb_descriptives_variables.R . frm_fb_init_imputations.R . frm_fb_init_matrices_saved_parameters.R . frm_fb_initial_parameters.R . frm_fb_initial_parameters_se_sd_proposal.R . frm_fb_mh_refresh_imputed_values.R . frm_fb_mh_refresh_parameters.R . frm_fb_partable.R . frm_fb_refresh_parameters_step.R . frm_fb_sample_imputed_values.R . frm_fb_sample_imputed_values_eval_likelihood.R . frm_fb_sample_imputed_values_evaluate_mh_ratio.R . frm_fb_sample_imputed_values_proposal.R . frm_fb_sample_parameter_step.R . frm_fb_sample_parameters.R . frm_fb_sample_parameters_df_squeeze.R . frm_fb_sample_parameters_mh_acceptance_step.R . frm_fb_verbose_iterations.R . frm_fb_verbose_mh_refresh.R . frm_formula_character.R . frm_formula_extract_terms.R . frm_linreg_density.R . frm_linreg_sample_parameters.R . frm_logistic_density.R . frm_mdmb_regression_density.R . frm_mlreg_create_design_matrices.R . frm_mlreg_density.R . frm_mlreg_sample_parameters.R . frm_mlreg_wrapper_ml_mcmc.R . frm_modify_parameter_labels.R . frm_normalize_matrix_row.R . frm_normalize_posterior.R . frm_normalize_vector.R . frm_oprobit_density.R . frm_partable_thresholds.R . frm_prepare_data_em.R . frm_prepare_data_fb.R . frm_prepare_data_include_latent_data.R . frm_prepare_model_nodes_weights.R . frm_prepare_models.R . frm_prepare_models_descriptives.R . frm_prepare_models_design_matrices.R . frm_prepare_models_sigma_fixed.R . frm_proposal_refresh_helper.R . logLik_extract_ic.R . logLik_mdmb.R . logistic_regression.R . logthresh_2_thresh.R . mdmb_compute_df.R . mdmb_diff_quotient.R . mdmb_discretize.R . mdmb_dnorm.R . mdmb_exp_overflow.R . mdmb_extract_coef.R . mdmb_ginv.R . mdmb_lm_wfit.R . mdmb_oprobit_extend_thresh.R . mdmb_optim.R . mdmb_optim_control.R . mdmb_refresh_proposal_sd.R . mdmb_regression.R . mdmb_regression_R2.R . mdmb_regression_adjustment_differentiation_parameter.R . mdmb_regression_est_df_description.R . mdmb_regression_extract_parameters.R . mdmb_regression_ic.R . mdmb_regression_logistic_density.R . mdmb_regression_loglike_case.R . mdmb_regression_loglike_logpost.R . mdmb_regression_oprobit_density.R . mdmb_regression_optim_oprobit_fct.R . mdmb_regression_optim_oprobit_grad.R . mdmb_regression_optim_yjt_extract.R . mdmb_regression_optim_yjt_fct.R . mdmb_regression_optim_yjt_grad.R . mdmb_regression_predict.R . mdmb_regression_predict_yjt_bct.R . mdmb_regression_proc_control_optim_fct.R . mdmb_regression_summary.R . mdmb_regression_summary_table.R . mdmb_sample_missings.R . mdmb_sample_probabilities.R . mdmb_squeeze.R . mdmb_squeeze_double.R . mdmb_summary_print_computation_time.R . mdmb_summary_print_model_description.R . mdmb_vcov2se.R . mdmb_weighted_sd.R . mdmb_weighted_var.R . offset_values_extract.R . oprobit_regression.R . plot.frm_fb.R . predict.bct_regression.R . predict.logistic_regression.R . predict.oprobit_regression.R . predict.yjt_regression.R . rbct_scaled.R . remove_NA_data_frame.R . rt_scaled.R . ryjt_scaled.R . summary.bct_regression.R . summary.fit_bct_scaled.R . summary.fit_oprobit.R . summary.fit_t_scaled.R . summary.fit_yjt_scaled.R . summary.frm_em.R . summary.frm_fb.R . summary.logistic_regression.R . summary.oprobit_regression.R . summary.yjt_regression.R . vcov.mdmb.R . yj_adjust_lambda.R . yj_antitrafo.R . yj_trafo.R . yjt_regression.R . zzz.R .  Full mdmb package functions and examples
Downloads during the last 30 days
03/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/05Downloads for mdmb1020304050607080TrendBars

Today's Hot Picks in Authors and Packages

letsR  
Data Handling and Analysis in Macroecology
Handling, processing, and analyzing geographic data on species' distributions and environmental var ...
Download / Learn more Package Citations See dependency  
MetaAnalyser  
An Interactive Visualisation of Meta-Analysis as a Physical Weighing Machine
An interactive application to visualise meta-analysis data as a physical weighing machine. The inte ...
Download / Learn more Package Citations See dependency  
probout  
Unsupervised Multivariate Outlier Probabilities for Large Datasets
Estimates unsupervised outlier probabilities for multivariate numeric data with many observations fr ...
Download / Learn more Package Citations See dependency  
nutriNetwork  
Structure Learning with Copula Graphical Model
Statistical tool for learning the structure of direct associations among variables for continuous d ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
ASMap  
Linkage Map Construction using the MSTmap Algorithm
Functions for Accurate and Speedy linkage map construction, manipulation and diagnosis of Doubled Ha ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA