Other packages > Find by keyword >

lcmm  

Extended Mixed Models Using Latent Classes and Latent Processes
View on CRAN: Click here


Download and install lcmm package within the R console
Install from CRAN:
install.packages("lcmm")

Install from Github:
library("remotes")
install_github("cran/lcmm")

Install by package version:
library("remotes")
install_version("lcmm", "2.2.1")



Attach the package and use:
library("lcmm")
Maintained by
Cecile Proust-Lima
[Scholar Profile | Author Map]
First Published: 2010-04-22
Latest Update: 2023-10-06
Description:
Estimation of various extensions of the mixed models including latent class mixed models, joint latent class mixed models, mixed models for curvilinear outcomes, mixed models for multivariate longitudinal outcomes using a maximum likelihood estimation method (Proust-Lima, Philipps, Liquet (2017) ).
How to cite:
Cecile Proust-Lima (2010). lcmm: Extended Mixed Models Using Latent Classes and Latent Processes. R package version 2.2.1, https://cran.r-project.org/web/packages/lcmm. Accessed 09 Apr. 2025.
Previous versions and publish date:
1.0 (2010-04-22 07:30), 1.2 (2011-02-21 15:14), 1.3-1 (2011-02-23 17:18), 1.4-1 (2011-07-07 10:07), 1.4-3 (2012-01-15 13:02), 1.4 (2011-06-06 08:26), 1.5.1 (2012-04-13 22:28), 1.5.2 (2012-04-16 17:39), 1.5.6 (2012-07-16 17:32), 1.5.7 (2012-07-24 09:58), 1.5.8 (2012-10-04 18:48), 1.6.2 (2013-03-07 07:56), 1.6.3 (2013-03-14 13:12), 1.6.4 (2014-04-11 22:57), 1.6.6 (2014-09-11 11:39), 1.7.1 (2015-02-26 09:33), 1.7.2 (2015-02-27 16:31), 1.7.3.0 (2015-10-23 13:55), 1.7.4 (2015-12-26 20:20), 1.7.5 (2016-03-16 18:16), 1.7.6 (2016-12-13 15:33), 1.7.7 (2017-03-23 21:57), 1.7.8 (2017-05-29 16:02), 1.7.9 (2018-06-22 15:03), 1.8.1.1 (2020-05-26 16:27), 1.8.1 (2019-06-26 12:01), 1.9.1 (2020-06-03 16:10), 1.9.2 (2020-07-07 13:50), 1.9.3 (2021-06-21 14:50), 1.9.4 (2022-01-05 13:20), 1.9.5 (2022-01-31 08:50), 2.0.0 (2022-06-24 18:20), 2.0.2 (2023-02-20 16:00), 2.1.0 (2023-10-06 19:10), 2.2.0 (2025-02-03 15:00)
Other packages that cited lcmm R package
View lcmm citation profile
Other R packages that lcmm depends, imports, suggests or enhances
Complete documentation for lcmm
Functions, R codes and Examples using the lcmm R package
Some associated functions: Diffepoce . ForInternalUse . ItemInfo . Jointlcmm . StandardMethods . VarCov . VarCovRE . VarExpl . WaldMult . cuminc . data_hlme . data_lcmm . dynpred . epoce . estimates . externVar . fitY . gridsearch . hlme . lcmm-package . lcmm . loglik . mpjlcmm . multlcmm . paquid . permut . plot.ItemInfo . plot.cuminc . plot.dynpred . plot . plot.pred.accuracy . plot.predict . postprob . predictClass . predictL . predictRE . predictY . predictYcond . predictlink . print.lcmm . simdataHADS . simulate.lcmm . summary.lcmm . summaryplot . summarytable . update.mpjlcmm . xclass . 
Some associated R codes: Brandom.R . Contlcmm.R . Diffepoce.R . ForInternalUse.R . ItemInfo.R . Jointlcmm.R . Ordlcmm.R . VarCov.R . VarCovRE.Jointlcmm.R . VarCovRE.hlme.R . VarCovRE.lcmm.R . VarCovRE.multlcmm.R . VarExpl.Jointlcmm.R . VarExpl.hlme.R . VarExpl.lcmm.R . VarExpl.multlcmm.R . WaldMult.R . absprm.R . argsmpj.R . cuminc.R . data_hlme.R . data_lcmm.R . dynpred.R . epoce.R . estimates.Jointlcmm.R . estimates.externSurv.R . estimates.externX.R . estimates.hlme.R . estimates.lcmm.R . estimates.mpjlcmm.R . estimates.multlcmm.R . externVar.R . factor.names.R . fitY.Jointlcmm.R . fitY.lcmm.R . fitY.multlcmm.R . gridsearch.R . hessienne.R . hlme.R . lcmm-package.R . lcmm.R . loglik.R . mixture.R . mpjlcmm.R . multlcmm.R . paquid.R . permut.R . permutmpj.R . plot.Diffepoce.R . plot.ItemInfo.R . plot.R . plot.cuminc.R . plot.dynpred.R . plot.epoce.R . plot.predictL.R . plot.predictY.R . plot.predictYcond.R . plot.predictlink.R . plotbaselinerisk.R . plotfit.R . plotlinkfunction.R . plotlinkfunctionmult.R . plotpostprob.R . plotresid.R . plotsurvival.R . postprob.Jointlcmm.R . postprob.externSurv.R . postprob.externX.R . postprob.hlme.R . postprob.lcmm.R . postprob.mpjlcmm.R . postprob.multlcmm.R . predYmedian.R . predictClass.R . predictL.Jointlcmm.R . predictL.lcmm.R . predictL.multlcmm.R . predictRE.R . predictY.Jointlcmm.R . predictY.hlme.R . predictY.lcmm.R . predictY.multlcmm.R . predictYcond.R . predictlink.Jointlcmm.R . predictlink.lcmm.R . predictlink.multlcmm.R . print.Diffepoce.R . print.Jointlcmm.R . print.epoce.R . print.externSurv.R . print.externX.R . print.hlme.R . print.lcmm.R . print.mpjlcmm.R . print.multlcmm.R . risq_spl.R . risqcum_spl.R . simdataHADS.R . simulate.R . standardMethods.R . summary.Diffepoce.R . summary.Jointlcmm.R . summary.epoce.R . summary.externSurv.R . summary.externX.R . summary.hlme.R . summary.lcmm.R . summary.mpjlcmm.R . summary.multlcmm.R . summaryplot.R . summarytable.R . transfo_spl.R . update.mpjlcmm.R . xclass.R .  Full lcmm package functions and examples
Downloads during the last 30 days
03/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/08Downloads for lcmm405060708090100110120130140150160170TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
cvmdisc  
Cramer von Mises Tests for Discrete or Grouped Distributions
Implements Cramer-von Mises Statistics for testing fit to (1) fully specified discrete distributions ...
Download / Learn more Package Citations See dependency  
multitaper  
Spectral Analysis Tools using the Multitaper Method
Implements multitaper spectral analysis using discrete prolate spheroidal sequences (Slepians) and s ...
Download / Learn more Package Citations See dependency  
mmb  
Arbitrary Dependency Mixed Multivariate Bayesian Models
Supports Bayesian models with full and partial (hence arbitrary) dependencies between random variab ...
Download / Learn more Package Citations See dependency  
prettyglm  
Pretty Summaries of Generalized Linear Model Coefficients
One of the main advantages of using Generalised Linear Models is their interpretability. The goal ...
Download / Learn more Package Citations See dependency  
fisheye  
Transform Base Maps Using Log-Azimuthal Projection
Base maps are transformed to focus on a specific location using an azimuthal logarithmic distance t ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA