Other packages > Find by keyword >

inlabru  

Bayesian Latent Gaussian Modelling using INLA and Extensions
View on CRAN: Click here


Download and install inlabru package within the R console
Install from CRAN:
install.packages("inlabru")

Install from Github:
library("remotes")
install_github("cran/inlabru")

Install by package version:
library("remotes")
install_version("inlabru", "2.12.0")



Attach the package and use:
library("inlabru")
Maintained by
Finn Lindgren
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2017-11-10
Latest Update: 2023-08-28
Description:
Facilitates spatial and general latent Gaussian modeling using integrated nested Laplace approximation via the INLA package (). Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. Ecology-focused introduction in Bachl, Lindgren, Borchers, and Illian (2019) .
How to cite:
Finn Lindgren (2017). inlabru: Bayesian Latent Gaussian Modelling using INLA and Extensions. R package version 2.12.0, https://cran.r-project.org/web/packages/inlabru. Accessed 22 Dec. 2024.
Previous versions and publish date:
2.1.1 (2017-11-10 19:16), 2.1.2 (2017-11-14 17:38), 2.1.3 (2018-02-11 15:26), 2.1.9 (2018-07-24 11:20), 2.1.12 (2019-06-24 11:10), 2.1.13 (2020-02-16 23:10), 2.3.0 (2021-03-16 09:50), 2.3.1 (2021-03-23 00:00), 2.4.0 (2021-12-19 02:50), 2.5.0 (2022-03-21 16:50), 2.5.2 (2022-03-30 18:20), 2.5.3 (2022-09-05 09:20), 2.6.0 (2022-10-24 11:55), 2.7.0 (2022-12-02 10:50), 2.8.0 (2023-06-20 16:10), 2.9.0 (2023-08-28 19:40), 2.10.0 (2023-10-29 06:10), 2.10.1 (2023-12-21 02:10), 2.11.1 (2024-07-02 01:30)
Other packages that cited inlabru R package
View inlabru citation profile
Other R packages that inlabru depends, imports, suggests or enhances
Complete documentation for inlabru
Functions, R codes and Examples using the inlabru R package
Some associated functions: Poisson1_1D . Poisson2_1D . Poisson3_1D . add_mappers . bincount . bm_list . bru . bru_call_options . bru_compute_linearisation . bru_convergence_plot . bru_env_get . bru_fill_missing . bru_get_mapper . bru_info . bru_int_polygon . bru_like_methods . bru_log . bru_log_bookmark . bru_log_message . bru_log_new . bru_log_offset . bru_log_reset . bru_make_stack . bru_mapper . bru_mapper_aggregate . bru_mapper_collect . bru_mapper_const . bru_mapper_factor . bru_mapper_fm_mesh_1d . bru_mapper_fm_mesh_2d . bru_mapper_generics . bru_mapper_harmonics . bru_mapper_index . bru_mapper_linear . bru_mapper_logsumexp . bru_mapper_marginal . bru_mapper_matrix . bru_mapper_mesh_B . bru_mapper_multi . bru_mapper_pipe . bru_mapper_scale . bru_mapper_shift . bru_mapper_summary . bru_mapper_taylor . bru_model . bru_options . bru_safe_inla . bru_safe_sp . bru_standardise_names . bru_summarise . bru_timings_plot . bru_transformation . bru_used . bru_used_update . bru_used_vars . code.components . comp_lin_eval . component . component_eval . component_list . cprod . deltaIC . devel.cvmeasure . eval_in_data_context . eval_spatial . evaluate_comp_lin . evaluate_comp_simple . evaluate_comp_simple_list_subsetting . evaluate_effect . evaluate_index . evaluate_inputs . evaluate_model . evaluate_predictor . expand_labels . extract_property . generate . gg.RasterLayer . gg.SpatRaster . gg.SpatialGridDataFrame . gg.SpatialLines . gg.SpatialPixels . gg.SpatialPixelsDataFrame . gg.SpatialPoints . gg.SpatialPolygons . gg.bru_prediction . gg.data.frame . gg.inla.mesh.1d . gg.inla.mesh . gg.matrix . gg . gg.sf . globe . glplot . gm . gmap . gorillas . gorillas_sf . iinla . index_eval . inla.stack.mjoin . inla_subset_eval . inlabru-deprecated . inlabru-package . input_eval . integration_weight_aggregation . ipoints . lgcp . like . local_testthat . materncov.bands . mexdolphin . mexdolphin_sf . mrsea . multiplot . parse_inclusion . pcmatern_B . pixels . plot.bru . plot.bru_prediction . plotsample . point2count . predict.bru . reexports . robins_subset . row_kron . sample.lgcp . seals . shrimp . sline . spatial.to.ppp . spde.posterior . spoly . summary.bru . summary.bru_options . summary.component . toygroups . 
Some associated R codes: 0_inlabru_envir.R . bru.gof.R . bru.inference.R . bru.integration.R . bru.spatial.R . data.Poisson1_1D.R . data.Poisson2_1D.R . data.Poisson3_1D.R . data.gorillas.R . data.mexdolphin.R . data.mrsea.R . data.robins_subset.R . data.seals.R . data.shrimp.R . data.toygroups.R . deltaIC.R . deprecated.R . effect.R . environment.R . fmesher.R . ggplot.R . inla.R . inlabru-package.R . integration.R . local_testthat.R . mappers.R . mesh.R . model.R . nlinla.R . plotsample.R . rgl.R . sampling.R . spatstat.R . spde.R . stack.R . track_plotting.R . transformation.R . utils.R .  Full inlabru package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA