Other packages > Find by keyword >

iCellR  

Analyzing High-Throughput Single Cell Sequencing Data
View on CRAN: Click here


Download and install iCellR package within the R console
Install from CRAN:
install.packages("iCellR")

Install from Github:
library("remotes")
install_github("cran/iCellR")

Install by package version:
library("remotes")
install_version("iCellR", "1.6.7")



Attach the package and use:
library("iCellR")
Maintained by
Alireza Khodadadi-Jamayran
[Scholar Profile | Author Map]
First Published: 2019-08-02
Latest Update: 2021-10-09
Description:
A toolkit that allows scientists to work with data from single cell sequencing technologies such as scRNA-seq, scVDJ-seq, scATAC-seq, CITE-Seq and Spatial Transcriptomics (ST). Single (i) Cell R package ('iCellR') provides unprecedented flexibility at every step of the analysis pipeline, including normalization, clustering, dimensionality reduction, imputation, visualization, and so on. Users can design both unsupervised and supervised models to best suit their research. In addition, the toolkit provides 2D and 3D interactive visualizations, differential expression analysis, filters based on cells, genes and clusters, data merging, normalizing for dropouts, data imputation methods, correcting for batch differences, pathway analysis, tools to find marker genes for clusters and conditions, predict cell types and pseudotime analysis. See Khodadadi-Jamayran, et al (2020) and Khodadadi-Jamayran, et al (2020) for more details.
How to cite:
Alireza Khodadadi-Jamayran (2019). iCellR: Analyzing High-Throughput Single Cell Sequencing Data. R package version 1.6.7, https://cran.r-project.org/web/packages/iCellR. Accessed 05 May. 2025.
Previous versions and publish date:
1.0.0 (2019-08-02 12:50), 1.1.2 (2019-09-10 21:20), 1.1.4 (2019-09-26 19:30), 1.2.0 (2019-10-15 07:20), 1.2.2 (2019-10-22 23:00), 1.2.5 (2019-11-04 23:00), 1.2.7 (2019-12-04 20:50), 1.2.9 (2020-01-17 00:10), 1.3.0 (2020-01-24 22:50), 1.3.1 (2020-02-26 13:50), 1.3.3 (2020-03-14 18:00), 1.4.0 (2020-04-03 16:10), 1.4.5 (2020-04-10 09:20), 1.5.0 (2020-05-08 10:40), 1.5.1 (2020-06-17 11:40), 1.5.4 (2020-07-03 18:30), 1.5.5 (2020-07-16 23:20), 1.5.8 (2020-10-09 06:40), 1.5.9 (2021-01-21 06:30), 1.6.0 (2021-01-30 07:00), 1.6.1 (2021-03-04 06:20), 1.6.4 (2021-04-27 19:10), 1.6.5 (2021-10-09 17:00)
Other packages that cited iCellR R package
View iCellR citation profile
Other R packages that iCellR depends, imports, suggests or enhances
Complete documentation for iCellR
Functions, R codes and Examples using the iCellR R package
Some associated functions: Rphenograph . add.10x.image . add.adt . add.vdj . adt.rna.merge . bubble.gg.plot . capture.image.10x . cc . cell.cycle . cell.filter . cell.gating . cell.type.pred . change.clust . clono.plot . clust.avg.exp . clust.cond.info . clust.ord . clust.rm . clust.stats.plot . cluster.plot . data.aggregation . data.scale . down.sample . find.dim.genes . findMarkers . find_neighbors . g2m.phase . gate.to.clust . gene.plot . gene.stats . gg.cor . heatmap.gg.plot . hto.anno . i.score . iba . iclust . load.h5 . load10x . make.bed . make.gene.model . makej . myImp . norm.adt . norm.data . opt.pcs.plot . prep.vdj . pseudotime.knetl . pseudotime . pseudotime.tree . qc.stats . run.anchor . run.cca . run.clustering . run.diff.exp . run.diffusion.map . run.impute . run.knetl . run.mnn . run.pc.tsne . run.pca . run.phenograph . run.tsne . run.umap . s.phase . spatial.plot . stats.plot . top.markers . vdj.stats . volcano.ma.plot . 
Some associated R codes: F0001.R . F0002.R . F0003.R . F0004.R . F0005.R . F0006.R . F0007.R . F0008.R . F0009.R . F0010.R . F0011.R . F0012.R . F0013.R . F0014.R . F0015.R . F0016.R . F0017.R . F0018.R . F0019.R . F0020.R . F0021.R . F0022.R . F0023.R . F0024.R . F0025.R . F0026.R . F0027.R . F0028.R . F0029.R . F0030.R . F0031.R . F0032.R . F0033.R . F0034.R . F0035.R . F0036.R . F0037.R . F0038.R . F0039.R . F0040.R . F0041.R . F0042.R . F0043.R . F0044.R . F0045.R . F0046.R . F0047.R . F0048.R . F0049.R . F0050.R . F0051.R . F0052.R . F0053.R . F0054.R . F0055.R . F0057.R . F0058.R . F0059.R . F0060.R . F0061.R . F0062.R . F0063.R . F0064.R . F0065.R . F0066.R . F0067.R . F0068.R . F0069.R . F0070.R . F0071.R . F0072.R . F0100.R . RcppExports.R .  Full iCellR package functions and examples
Downloads during the last 30 days
04/0504/0604/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/1804/1904/2004/2104/2204/2304/2404/2504/2604/2704/2804/2904/3005/0105/03Downloads for iCellR5101520253035TrendBars

Today's Hot Picks in Authors and Packages

cape  
Combined Analysis of Pleiotropy and Epistasis for Diversity Outbred Mice
Combined Analysis of Pleiotropy and Epistasis infers predictive networks between genetic variants a ...
Download / Learn more Package Citations See dependency  
pdqr  
Work with Custom Distribution Functions
Create, transform, and summarize custom random variables with distribution functions (analogues of ...
Download / Learn more Package Citations See dependency  
lifecourse  
Quantification of Lifecourse Fluidity
Provides in built datasets and three functions. These functions are mobility_index, nonStanTest and ...
Download / Learn more Package Citations See dependency  
BINCOR  
Estimate the Correlation Between Two Irregular Time Series
Estimate the correlation between two irregular time series that are not necessarily sampled on ident ...
Download / Learn more Package Citations See dependency  
rsvd  
Randomized Singular Value Decomposition
Low-rank matrix decompositions are fundamental tools and widely used for data analysis, dimension r ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

24,187

R Packages

207,311

Dependencies

65,312

Author Associations

24,143

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA