Other packages > Find by keyword >

iCellR  

Analyzing High-Throughput Single Cell Sequencing Data
View on CRAN: Click here


Download and install iCellR package within the R console
Install from CRAN:
install.packages("iCellR")

Install from Github:
library("remotes")
install_github("cran/iCellR")

Install by package version:
library("remotes")
install_version("iCellR", "1.6.7")



Attach the package and use:
library("iCellR")
Maintained by
Alireza Khodadadi-Jamayran
[Scholar Profile | Author Map]
First Published: 2019-08-02
Latest Update: 2021-10-09
Description:
A toolkit that allows scientists to work with data from single cell sequencing technologies such as scRNA-seq, scVDJ-seq, scATAC-seq, CITE-Seq and Spatial Transcriptomics (ST). Single (i) Cell R package ('iCellR') provides unprecedented flexibility at every step of the analysis pipeline, including normalization, clustering, dimensionality reduction, imputation, visualization, and so on. Users can design both unsupervised and supervised models to best suit their research. In addition, the toolkit provides 2D and 3D interactive visualizations, differential expression analysis, filters based on cells, genes and clusters, data merging, normalizing for dropouts, data imputation methods, correcting for batch differences, pathway analysis, tools to find marker genes for clusters and conditions, predict cell types and pseudotime analysis. See Khodadadi-Jamayran, et al (2020) and Khodadadi-Jamayran, et al (2020) for more details.
How to cite:
Alireza Khodadadi-Jamayran (2019). iCellR: Analyzing High-Throughput Single Cell Sequencing Data. R package version 1.6.7, https://cran.r-project.org/web/packages/iCellR. Accessed 01 Apr. 2025.
Previous versions and publish date:
1.0.0 (2019-08-02 12:50), 1.1.2 (2019-09-10 21:20), 1.1.4 (2019-09-26 19:30), 1.2.0 (2019-10-15 07:20), 1.2.2 (2019-10-22 23:00), 1.2.5 (2019-11-04 23:00), 1.2.7 (2019-12-04 20:50), 1.2.9 (2020-01-17 00:10), 1.3.0 (2020-01-24 22:50), 1.3.1 (2020-02-26 13:50), 1.3.3 (2020-03-14 18:00), 1.4.0 (2020-04-03 16:10), 1.4.5 (2020-04-10 09:20), 1.5.0 (2020-05-08 10:40), 1.5.1 (2020-06-17 11:40), 1.5.4 (2020-07-03 18:30), 1.5.5 (2020-07-16 23:20), 1.5.8 (2020-10-09 06:40), 1.5.9 (2021-01-21 06:30), 1.6.0 (2021-01-30 07:00), 1.6.1 (2021-03-04 06:20), 1.6.4 (2021-04-27 19:10), 1.6.5 (2021-10-09 17:00)
Other packages that cited iCellR R package
View iCellR citation profile
Other R packages that iCellR depends, imports, suggests or enhances
Complete documentation for iCellR
Functions, R codes and Examples using the iCellR R package
Some associated functions: Rphenograph . add.10x.image . add.adt . add.vdj . adt.rna.merge . bubble.gg.plot . capture.image.10x . cc . cell.cycle . cell.filter . cell.gating . cell.type.pred . change.clust . clono.plot . clust.avg.exp . clust.cond.info . clust.ord . clust.rm . clust.stats.plot . cluster.plot . data.aggregation . data.scale . down.sample . find.dim.genes . findMarkers . find_neighbors . g2m.phase . gate.to.clust . gene.plot . gene.stats . gg.cor . heatmap.gg.plot . hto.anno . i.score . iba . iclust . load.h5 . load10x . make.bed . make.gene.model . makej . myImp . norm.adt . norm.data . opt.pcs.plot . prep.vdj . pseudotime.knetl . pseudotime . pseudotime.tree . qc.stats . run.anchor . run.cca . run.clustering . run.diff.exp . run.diffusion.map . run.impute . run.knetl . run.mnn . run.pc.tsne . run.pca . run.phenograph . run.tsne . run.umap . s.phase . spatial.plot . stats.plot . top.markers . vdj.stats . volcano.ma.plot . 
Some associated R codes: F0001.R . F0002.R . F0003.R . F0004.R . F0005.R . F0006.R . F0007.R . F0008.R . F0009.R . F0010.R . F0011.R . F0012.R . F0013.R . F0014.R . F0015.R . F0016.R . F0017.R . F0018.R . F0019.R . F0020.R . F0021.R . F0022.R . F0023.R . F0024.R . F0025.R . F0026.R . F0027.R . F0028.R . F0029.R . F0030.R . F0031.R . F0032.R . F0033.R . F0034.R . F0035.R . F0036.R . F0037.R . F0038.R . F0039.R . F0040.R . F0041.R . F0042.R . F0043.R . F0044.R . F0045.R . F0046.R . F0047.R . F0048.R . F0049.R . F0050.R . F0051.R . F0052.R . F0053.R . F0054.R . F0055.R . F0057.R . F0058.R . F0059.R . F0060.R . F0061.R . F0062.R . F0063.R . F0064.R . F0065.R . F0066.R . F0067.R . F0068.R . F0069.R . F0070.R . F0071.R . F0072.R . F0100.R . RcppExports.R .  Full iCellR package functions and examples
Downloads during the last 30 days
03/0203/0303/0403/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/31Downloads for iCellR010203040506070TrendBars

Today's Hot Picks in Authors and Packages

simplevis  
Wrappers to Simplify Beautiful "ggplot2" and "leaflet" Visualisation
Wrapper functions around the amazing 'leaflet' package that aims to simplify 'leaflet' visualisatio ...
Download / Learn more Package Citations See dependency  
samplesize  
Sample Size Calculation for Various t-Tests and Wilcoxon-Test
Computes sample size for Student's t-test and for the Wilcoxon-Mann-Whitney test for categorical dat ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
shinyBS  
Twitter Bootstrap Components for Shiny
Adds additional Twitter Bootstrap components to Shiny. ...
Download / Learn more Package Citations See dependency  
eSIR  
Extended State-Space SIR Models
An implementation of extended state-space SIR models developed by Song Lab at UM school of Public H ...
Download / Learn more Package Citations See dependency  
gasmodel  
Generalized Autoregressive Score Models
Estimation, forecasting, and simulation of generalized autoregressive score (GAS) models of Creal, ...
Download / Learn more Package Citations See dependency  

23,842

R Packages

207,311

Dependencies

64,420

Author Associations

23,781

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA