Other packages > Find by keyword >

h2o  

R Interface for the 'H2O' Scalable Machine Learning Platform
View on CRAN: Click here


Download and install h2o package within the R console
Install from CRAN:
install.packages("h2o")

Install from Github:
library("remotes")
install_github("cran/h2o")

Install by package version:
library("remotes")
install_version("h2o", "3.44.0.3")



Attach the package and use:
library("h2o")
Maintained by
Tomas Fryda
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2014-06-17
Latest Update: 2024-01-11
Description:
R interface for 'H2O', the scalable open source machine learning platform that offers parallelized implementations of many supervised and unsupervised machine learning algorithms such as Generalized Linear Models (GLM), Gradient Boosting Machines (including XGBoost), Random Forests, Deep Neural Networks (Deep Learning), Stacked Ensembles, Naive Bayes, Generalized Additive Models (GAM), ANOVA GLM, Cox Proportional Hazards, K-Means, PCA, ModelSelection, Word2Vec, as well as a fully automatic machine learning algorithm (H2O AutoML).
How to cite:
Tomas Fryda (2014). h2o: R Interface for the 'H2O' Scalable Machine Learning Platform. R package version 3.44.0.3, https://cran.r-project.org/web/packages/h2o. Accessed 22 Dec. 2024.
Previous versions and publish date:
2.4.3.11 (2014-06-17 23:04), 2.8.1.1 (2014-10-27 18:11), 2.8.4.4 (2015-02-08 00:30), 3.0.0.22 (2015-06-14 08:32), 3.0.0.30 (2015-07-22 05:29), 3.2.0.1 (2015-09-15 01:08), 3.2.0.3 (2015-09-23 02:25), 3.6.0.8 (2015-11-24 15:04), 3.8.1.3 (2016-03-15 06:32), 3.8.2.6 (2016-06-02 07:11), 3.8.3.3 (2016-07-13 10:19), 3.10.0.6 (2016-09-03 10:01), 3.10.0.8 (2016-10-14 08:16), 3.10.2.2 (2017-01-18 00:47), 3.10.3.3 (2017-02-03 14:33), 3.10.3.6 (2017-02-22 08:42), 3.10.4.4 (2017-04-17 20:29), 3.10.4.6 (2017-05-02 08:46), 3.10.5.2 (2017-06-23 12:32), 3.10.5.3 (2017-07-01 09:53), 3.14.0.3 (2017-09-27 10:29), 3.16.0.1 (2017-11-28 01:16), 3.16.0.2 (2017-12-02 00:16), 3.18.0.8 (2018-05-02 09:58), 3.18.0.11 (2018-05-24 23:49), 3.20.0.2 (2018-06-17 17:50), 3.20.0.8 (2018-09-25 12:30), 3.22.1.1 (2019-01-10 23:20), 3.24.0.5 (2019-06-21 10:20), 3.26.0.2 (2019-08-01 15:00), 3.28.0.2 (2020-01-22 12:20), 3.28.0.4 (2020-02-26 14:00), 3.30.0.1 (2020-04-09 10:50), 3.30.1.2 (2020-09-12 08:10), 3.30.1.3 (2020-09-30 11:10), 3.32.0.1 (2020-10-17 09:00), 3.32.1.2 (2021-05-06 12:10), 3.32.1.3 (2021-05-23 06:30), 3.34.0.3 (2021-10-09 23:50), 3.34.0.6 (2021-12-17 10:40), 3.36.0.1 (2022-01-04 01:10), 3.36.0.2 (2022-01-26 15:12), 3.36.0.3 (2022-02-17 13:02), 3.36.0.4 (2022-04-05 08:50), 3.36.1.2 (2022-05-28 02:00), 3.38.0.1 (2022-09-23 13:50), 3.40.0.1 (2023-02-24 10:22), 3.40.0.4 (2023-05-26 01:10), 3.42.0.2 (2023-08-09 07:00)
Other packages that cited h2o R package
View h2o citation profile
Other R packages that h2o depends, imports, suggests or enhances
Complete documentation for h2o
Functions, R codes and Examples using the h2o R package
Some associated functions: H2OAutoML-class . H2OClusteringModel-class . H2OConnection-class . H2OConnectionMutableState . H2OCoxPHModel-class . H2OCoxPHModelSummary-class . H2OFrame-Extract . H2OFrame-class . H2OFrame . H2OGrid-class . H2OInfogram-class . H2OInfogram . H2OLeafNode-class . H2OModel-class . H2OModelFuture-class . H2OModelMetrics-class . H2ONode-class . H2OSegmentModels-class . H2OSegmentModelsFuture-class . H2OSplitNode-class . H2OTree-class . Keyed-class . Logical-or . ModelAccessors . aaa . and-and . apply . as.character.H2OFrame . as.data.frame.H2OFrame . as.data.frame.H2OSegmentModels . as.factor . as.h2o . as.matrix.H2OFrame . as.numeric . as.vector.H2OFrame . australia . case_insensitive_match_arg . colnames . dim.H2OFrame . dimnames.H2OFrame . dot-addParm . dot-check_for_ggplot2 . dot-collapse . dot-consolidate_varimps . dot-create_leaderboard . dot-customized_call . dot-find_appropriate_column_name . dot-get_algorithm . dot-get_domain_mapping . dot-get_feature_count . dot-get_first_of_family . dot-h2o.__ALL_CAPABILITIES . dot-h2o.__CREATE_FRAME . dot-h2o.__DECRYPTION_SETUP . dot-h2o.__DKV . dot-h2o.__EXPORT_FILES . dot-h2o.__FRAMES . dot-h2o.__IMPORT . dot-h2o.__JOBS . dot-h2o.__LOGANDECHO . dot-h2o.__MODELS . dot-h2o.__MODEL_BUILDERS . dot-h2o.__MODEL_METRICS . dot-h2o.__PARSE_SETUP . dot-h2o.__RAPIDS . dot-h2o.__REST_API_VERSION . dot-h2o.__SEGMENT_MODELS_BUILDERS . dot-h2o.__W2V_SYNONYMS . dot-h2o.__checkConnectionHealth . dot-h2o.doGET . dot-h2o.doPOST . dot-h2o.doRawGET . dot-h2o.doRawPOST . dot-h2o.doSafeGET . dot-h2o.doSafePOST . dot-h2o.is_progress . dot-h2o.locate . dot-h2o.perfect_auc . dot-h2o.primitives . dot-has_model_coefficients . dot-has_varimp . dot-interpretable . dot-is_h2o_model . dot-is_h2o_tree_model . dot-is_plotting_to_rnotebook . dot-leaderboard_for_row . dot-min_max . dot-model_ids . dot-pkg.env . dot-plot_varimp . dot-process_models_or_automl . dot-shorten_model_ids . dot-skip_if_not_developer . dot-uniformize . dot-varimp . dot-verify_dataxy . feature_frequencies.H2OModel . generate_col_ind . get_seed.H2OModel . h2o-package . h2o.HGLMMetrics . h2o.abs . h2o.acos . h2o.adaBoost . h2o.aecu . h2o.aecu_table . h2o.aggregated_frame . h2o.aggregator . h2o.aic . h2o.all . h2o.anomaly . h2o.anovaglm . h2o.any . h2o.anyFactor . h2o.api . h2o.arrange . h2o.as_date . h2o.ascharacter . h2o.asfactor . h2o.asnumeric . h2o.assign . h2o.atc . h2o.ate . h2o.att . h2o.auc . h2o.aucpr . h2o.automl . h2o.auuc . h2o.auuc_normalized . h2o.auuc_table . h2o.average_objective . h2o.betweenss . h2o.biases . h2o.bottomN . h2o.calculate_fairness_metrics . h2o.cbind . h2o.ceiling . h2o.centers . h2o.centersSTD . h2o.centroid_stats . h2o.clearLog . h2o.clusterInfo . h2o.clusterIsUp . h2o.clusterStatus . h2o.cluster_sizes . h2o.coef . h2o.coef_norm . h2o.coef_with_p_values . h2o.colnames . h2o.columns_by_type . h2o.computeGram . h2o.confusionMatrix . h2o.connect . h2o.cor . h2o.cos . h2o.cosh . h2o.coxph . h2o.createFrame . h2o.cross_validation_fold_assignment . h2o.cross_validation_holdout_predictions . h2o.cross_validation_models . h2o.cross_validation_predictions . h2o.cummax . h2o.cummin . h2o.cumprod . h2o.cumsum . h2o.cut . h2o.day . h2o.dayOfWeek . h2o.dct . h2o.ddply . h2o.decision_tree . h2o.decryptionSetup . h2o.deepfeatures . h2o.deeplearning . h2o.describe . h2o.diff . h2o.dim . h2o.dimnames . h2o.disparate_analysis . h2o.distance . h2o.downloadAllLogs . h2o.downloadCSV . h2o.download_model . h2o.download_mojo . h2o.download_pojo . h2o.drop_duplicates . h2o.entropy . h2o.exp . h2o.explain . h2o.explain_row . h2o.exportFile . h2o.exportHDFS . h2o.extendedIsolationForest . h2o.fair_pd_plot . h2o.fair_pr_plot . h2o.fair_roc_plot . h2o.fair_shap_plot . h2o.feature_interaction . h2o.fillna . h2o.filterNACols . h2o.findSynonyms . h2o.find_row_by_threshold . h2o.find_threshold_by_max_metric . h2o.floor . h2o.flow . h2o.gainsLift . h2o.gains_lift_plot-H2OModel-method . h2o.gains_lift_plot-H2OModelMetrics-method . h2o.gains_lift_plot . h2o.gam . h2o.gbm . h2o.generic . h2o.genericModel . h2o.getAlphaBest . h2o.getConnection . h2o.getFrame . h2o.getGLMFullRegularizationPath . h2o.getGrid . h2o.getId . h2o.getLambdaBest . h2o.getLambdaMax . h2o.getLambdaMin . h2o.getModel . h2o.getModelTree . h2o.getTimezone . h2o.getTypes . h2o.getVersion . h2o.get_automl . h2o.get_best_model . h2o.get_best_model_predictors . h2o.get_best_r2_values . h2o.get_gam_knot_column_names . h2o.get_knot_locations . h2o.get_leaderboard . h2o.get_ntrees_actual . h2o.get_predictors_added_per_step . h2o.get_predictors_removed_per_step . h2o.get_regression_influence_diagnostics . h2o.get_segment_models . h2o.get_variable_inflation_factors . h2o.giniCoef . h2o.glm . h2o.glrm . h2o.grep . h2o.grid . h2o.group_by . h2o.gsub . h2o.h . h2o.head . h2o.hist . h2o.hit_ratio_table . h2o.hour . h2o.ice_plot . h2o.ifelse . h2o.importFile . h2o.import_hive_table . h2o.import_mojo . h2o.import_sql_select . h2o.import_sql_table . h2o.impute . h2o.infogram . h2o.infogram_train_subset_models . h2o.init . h2o.insertMissingValues . h2o.inspect_model_fairness . h2o.interaction . h2o.is_client . h2o.isax . h2o.ischaracter . h2o.isfactor . h2o.isnumeric . h2o.isolationForest . h2o.isotonicregression . h2o.keyof . h2o.kfold_column . h2o.killMinus3 . h2o.kmeans . h2o.kolmogorov_smirnov . h2o.kurtosis . h2o.learning_curve_plot . h2o.levels . h2o.listTimezones . h2o.list_all_extensions . h2o.list_api_extensions . h2o.list_core_extensions . h2o.list_jobs . h2o.list_models . h2o.loadGrid . h2o.loadModel . h2o.load_frame . h2o.log . h2o.log10 . h2o.log1p . h2o.log2 . h2o.logAndEcho . h2o.loglikelihood . h2o.logloss . h2o.ls . h2o.lstrip . h2o.mae . h2o.makeGLMModel . h2o.make_leaderboard . h2o.make_metrics . h2o.match . h2o.max . h2o.mean . h2o.mean_per_class_error . h2o.mean_residual_deviance . h2o.median . h2o.melt . h2o.merge . h2o.metric . h2o.min . h2o.mktime . h2o.modelSelection . h2o.model_correlation . h2o.model_correlation_heatmap . h2o.mojo_predict_csv . h2o.mojo_predict_df . h2o.month . h2o.mse . h2o.multinomial_auc_table . h2o.multinomial_aucpr_table . h2o.na_omit . h2o.nacnt . h2o.naiveBayes . h2o.names . h2o.nchar . h2o.ncol . h2o.negative_log_likelihood . h2o.networkTest . h2o.nlevels . h2o.no_progress . h2o.nrow . h2o.null_deviance . h2o.null_dof . h2o.num_iterations . h2o.num_valid_substrings . h2o.openLog . h2o.pareto_front . h2o.parseRaw . h2o.parseSetup . h2o.partialPlot . h2o.pd_multi_plot . h2o.pd_plot . h2o.performance . h2o.permutation_importance . h2o.permutation_importance_plot . h2o.pivot . h2o.prcomp . h2o.predict . h2o.predict_json . h2o.predict_rules . h2o.predicted_vs_actual_by_variable . h2o.print . h2o.prod . h2o.proj_archetypes . h2o.psvm . h2o.qini . h2o.quantile . h2o.r2 . h2o.randomForest . h2o.range . h2o.rank_within_group_by . h2o.rapids . h2o.rbind . h2o.reconstruct . h2o.relevel . h2o.relevel_by_frequency . h2o.removeAll . h2o.removeVecs . h2o.rep_len . h2o.reset_threshold . h2o.residual_analysis_plot . h2o.residual_deviance . h2o.residual_dof . h2o.result . h2o.resume . h2o.resumeGrid . h2o.rm . h2o.rmse . h2o.rmsle . h2o.round . h2o.rstrip . h2o.rule_importance . h2o.rulefit . h2o.runif . h2o.saveGrid . h2o.saveModel . h2o.saveModelDetails . h2o.saveMojo . h2o.save_frame . h2o.save_mojo . h2o.save_to_hive . h2o.scale . h2o.scoreHistory . h2o.scoreHistoryGAM . h2o.screeplot . h2o.sd . h2o.sdev . h2o.setLevels . h2o.setTimezone . h2o.set_s3_credentials . h2o.shap_explain_row_plot . h2o.shap_summary_plot . h2o.show_progress . h2o.shutdown . h2o.signif . h2o.sin . h2o.skewness . h2o.splitFrame . h2o.sqrt . h2o.stackedEnsemble . h2o.startLogging . h2o.std_coef_plot . h2o.stopLogging . h2o.str . h2o.stringdist . h2o.strsplit . h2o.sub . h2o.substring . h2o.sum . h2o.summary . h2o.svd . h2o.table . h2o.tabulate . h2o.tan . h2o.tanh . h2o.target_encode_apply . h2o.target_encode_create . h2o.targetencoder . h2o.tf_idf . h2o.thresholds_and_metric_scores . h2o.toFrame . h2o.tokenize . h2o.tolower . h2o.topBottomN . h2o.topN . h2o.tot_withinss . h2o.totss . h2o.toupper . h2o.train_segments . h2o.transform-H2OTargetEncoderModel-method . h2o.transform-H2OWordEmbeddingModel-method . h2o.transform . h2o.transform_frame . h2o.transform_word2vec . h2o.trim . h2o.trunc . h2o.unique . h2o.upliftRandomForest . h2o.upload_model . h2o.upload_mojo . h2o.var . h2o.varimp-H2OAutoML-method . h2o.varimp-H2OFrame-method . h2o.varimp-H2OModel-method . h2o.varimp . h2o.varimp_heatmap . h2o.varimp_plot . h2o.varsplits . h2o.week . h2o.weights . h2o.which . h2o.which_max . h2o.which_min . h2o.withinss . h2o.word2vec . h2o.xgboost.available . h2o.xgboost . h2o.year . housevotes . initialize-H2OInfogram-method . iris . is.character . is.factor . is.h2o . is.numeric . length-H2OTree-method . model_cache-class . names.H2OFrame . plot-methods . plot.H2OInfogram . plot.H2OModel . plot.H2OTabulate . predict.H2OAutoML . predict.H2OModel . predict_contributions.H2OModel . predict_leaf_node_assignment.H2OModel . print.H2OFrame . print.H2OTable . prostate . range.H2OFrame . row_to_tree_assignment.H2OModel . scale . show-H2OAutoML-method . show-H2OParetoFront-method . staged_predict_proba.H2OModel . str.H2OFrame . summary-H2OAutoML-method . summary-H2OCoxPHModel-method . summary-H2OGrid-method . summary-H2OModel-method . use.package . walking . zzz . 
Some associated R codes: adaboost.R . admissibleml.R . aggregator.R . anovaglm.R . astfun.R . automl.R . classes.R . communication.R . config.R . connection.R . constants.R . coxph.R . coxphutils.R . datasets.R . decisiontree.R . deeplearning.R . edicts.R . explain.R . export.R . extendedisolationforest.R . frame.R . gam.R . gbm.R . generic.R . glm.R . glrm.R . grid.R . import.R . infogram.R . isolationforest.R . isotonicregression.R . kmeans.R . kvstore.R . locate.R . logging.R . models.R . modelselection.R . naivebayes.R . parse.R . pca.R . permutation_varimp.R . predict.R . psvm.R . randomforest.R . rulefit.R . segment.R . stackedensemble.R . svd.R . targetencoder.R . tf-idf.R . upliftrandomforest.R . w2vutils.R . word2vec.R . xgboost.R . zzz.R .  Full h2o package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA