Other packages > Find by keyword >

grf  

Generalized Random Forests
View on CRAN: Click here


Download and install grf package within the R console
Install from CRAN:
install.packages("grf")

Install from Github:
library("remotes")
install_github("cran/grf")

Install by package version:
library("remotes")
install_version("grf", "2.3.2")



Attach the package and use:
library("grf")
Maintained by
Erik Sverdrup
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2017-07-04
Latest Update: 2024-02-25
Description:
Forest-based statistical estimation and inference. GRF provides non-parametric methods for heterogeneous treatment effects estimation (optionally using right-censored outcomes, multiple treatment arms or outcomes, or instrumental variables), as well as least-squares regression, quantile regression, and survival regression, all with support for missing covariates.
How to cite:
Erik Sverdrup (2017). grf: Generalized Random Forests. R package version 2.3.2, https://cran.r-project.org/web/packages/grf. Accessed 21 Nov. 2024.
Previous versions and publish date:
0.9.2 (2017-07-04 14:56), 0.9.3 (2017-07-21 10:44), 0.9.4 (2017-11-27 09:49), 0.9.5 (2018-01-09 12:04), 0.9.6 (2018-04-14 16:50), 0.10.0 (2018-05-09 11:05), 0.10.1 (2018-09-24 18:30), 0.10.2 (2018-11-24 06:20), 0.10.3 (2019-05-27 07:00), 0.10.4 (2019-09-03 14:30), 1.0.0 (2019-12-02 00:00), 1.0.1 (2019-12-06 10:10), 1.1.0 (2020-03-12 07:30), 1.2.0 (2020-06-04 09:40), 2.0.0 (2021-06-22 06:10), 2.0.1 (2021-07-06 19:40), 2.0.2 (2021-07-14 18:00), 2.1.0 (2022-03-17 20:10), 2.2.0 (2022-08-06 11:00), 2.2.1 (2022-12-15 00:10), 2.3.0 (2023-05-11 01:00), 2.3.1 (2023-10-01 02:10), 2.3.2 (2024-02-25 08:30)
Other packages that cited grf R package
View grf citation profile
Other R packages that grf depends, imports, suggests or enhances
Complete documentation for grf
Functions, R codes and Examples using the grf R package
Some associated functions: average_late . average_partial_effect . average_treatment_effect . best_linear_projection . boosted_regression_forest . boot_grf . causal_forest . causal_survival_forest . create_dot_body . custom_forest . estimate_rate . expected_survival . export_graphviz . generate_causal_data . generate_causal_survival_data . get_forest_weights . get_leaf_node . get_sample_weights . get_scores.causal_forest . get_scores.causal_survival_forest . get_scores.instrumental_forest . get_scores.multi_arm_causal_forest . get_scores . get_tree . grf-package . instrumental_forest . leaf_stats.causal_forest . leaf_stats.default . leaf_stats.instrumental_forest . leaf_stats.regression_forest . ll_regression_forest . lm_forest . merge_forests . multi_arm_causal_forest . multi_regression_forest . plot.grf_tree . plot.rank_average_treatment_effect . predict.boosted_regression_forest . predict.causal_forest . predict.causal_survival_forest . predict.instrumental_forest . predict.ll_regression_forest . predict.lm_forest . predict.multi_arm_causal_forest . predict.multi_regression_forest . predict.probability_forest . predict.quantile_forest . predict.regression_forest . predict.survival_forest . print.boosted_regression_forest . print.grf . print.grf_tree . print.rank_average_treatment_effect . print.tuning_output . probability_forest . quantile_forest . rank_average_treatment_effect.fit . rank_average_treatment_effect . regression_forest . split_frequencies . survival_forest . test_calibration . tune_causal_forest . tune_forest . tune_instrumental_forest . tune_ll_causal_forest . tune_ll_regression_forest . tune_regression_forest . variable_importance . 
Some associated R codes: RcppExports.R . analysis_tools.R . average_treatment_effect.R . boosted_regression_forest.R . causal_forest.R . causal_survival_forest.R . deprecated.R . dgps.R . forest_summary.R . get_scores.R . grf-package.R . input_utilities.R . instrumental_forest.R . ll_regression_forest.R . lm_forest.R . merge_forests.R . multi_arm_causal_forest.R . multi_regression_forest.R . plot.R . print.R . probability_forest.R . quantile_forest.R . rank_average_treatment.R . regression_forest.R . survival_forest.R . tune_forest.R . tune_ll_causal_forest.R . tune_ll_regression_forest.R .  Full grf package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

SCBiclust  
Identifies Mean, Variance, and Hierarchically Clustered Biclusters
Identifies a bicluster, a submatrix of the data such that the features and observations within the s ...
Download / Learn more Package Citations See dependency  
deductive  
Data Correction and Imputation Using Deductive Methods
Attempt to repair inconsistencies and missing values in data records by using information from vali ...
Download / Learn more Package Citations See dependency  
RcppHNSW  
'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest Neighbors
'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This package provides a minimal R int ...
Download / Learn more Package Citations See dependency  
kgschart  
KGS Rank Graph Parser
Restore underlining numeric data from rating history graph of KGS (an online platform of the game o ...
Download / Learn more Package Citations See dependency  
crossrun  
Joint Distribution of Number of Crossings and Longest Run
Joint distribution of number of crossings and the longest run in a series of independent Bernoulli ...
Download / Learn more Package Citations See dependency  
pkgdepends  
Package Dependency Resolution and Downloads
Find recursive dependencies of 'R' packages from various sources. Solve the dependencies to obtain ...
Download / Learn more Package Citations See dependency  

23,229

R Packages

199,929

Dependencies

62,984

Author Associations

23,230

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA