Other packages > Find by keyword >

gpboost  

Combining Tree-Boosting with Gaussian Process and Mixed Effects Models
View on CRAN: Click here


Download and install gpboost package within the R console
Install from CRAN:
install.packages("gpboost")

Install from Github:
library("remotes")
install_github("cran/gpboost")

Install by package version:
library("remotes")
install_version("gpboost", "1.5.5.1")



Attach the package and use:
library("gpboost")
Maintained by
Fabio Sigrist
[Scholar Profile | Author Map]
First Published: 2021-02-17
Latest Update: 2024-02-28
Description:
An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See for more information on the software and Sigrist (2022, JMLR) and Sigrist (2023, TPAMI) for more information on the methodology.
How to cite:
Fabio Sigrist (2021). gpboost: Combining Tree-Boosting with Gaussian Process and Mixed Effects Models. R package version 1.5.5.1, https://cran.r-project.org/web/packages/gpboost. Accessed 19 Feb. 2025.
Previous versions and publish date:
0.4.0 (2021-02-17 21:20), 0.5.0 (2021-03-12 14:20), 0.6.0 (2021-04-21 14:50), 0.6.1 (2021-05-25 12:00), 0.6.3 (2021-06-18 11:00), 0.6.6 (2021-07-14 09:30), 0.6.7 (2021-08-17 18:20), 0.7.0 (2021-12-09 21:50), 0.7.1 (2022-01-15 13:22), 0.7.2 (2022-02-21 12:10), 0.7.3.1 (2022-03-23 14:20), 0.7.3 (2022-03-22 17:20), 0.7.5 (2022-05-05 11:30), 0.7.6.2 (2022-05-09 10:40), 0.7.7 (2022-06-10 15:40), 0.7.8 (2022-07-08 16:00), 0.7.9 (2022-08-25 14:40), 0.7.10 (2022-11-14 09:20), 0.8.0 (2022-12-01 17:40), 0.8.1 (2023-01-19 07:40), 0.8.2 (2023-02-17 18:20), 1.0.0 (2023-03-09 15:00), 1.0.1 (2023-03-10 12:10), 1.2.0 (2023-06-09 15:30), 1.2.1 (2023-06-15 01:20), 1.2.3 (2023-07-16 08:00), 1.2.4 (2023-10-02 17:30), 1.2.5 (2023-10-04 17:40), 1.2.6 (2023-10-24 10:10), 1.2.7 (2023-11-29 17:20), 1.2.8 (2024-01-19 01:10), 1.2.9 (2024-02-19 17:30), 1.3.0 (2024-02-28 09:30), 1.3.1 (2024-03-28 09:40), 1.4.0.1 (2024-04-15 08:40), 1.4.0 (2024-04-11 17:50), 1.5.0 (2024-05-28 11:00), 1.5.1.1 (2024-07-16 17:10), 1.5.1.2 (2024-08-26 20:20), 1.5.1 (2024-06-21 15:40), 1.5.4 (2024-11-15 18:40), 1.5.5.1 (2025-01-20 11:00), 1.5.5 (2024-12-20 17:30)
Other packages that cited gpboost R package
View gpboost citation profile
Other R packages that gpboost depends, imports, suggests or enhances
Complete documentation for gpboost
Functions, R codes and Examples using the gpboost R package
Some associated functions: GPBoost_data . GPModel . GPModel_shared_params . X . X_test . agaricus.test . agaricus.train . bank . coords . coords_test . dim . dimnames.gpb.Dataset . fit.GPModel . fit . fitGPModel . get_nested_categories . getinfo . gpb.Dataset.construct . gpb.Dataset.create.valid . gpb.Dataset . gpb.Dataset.save . gpb.Dataset.set.categorical . gpb.Dataset.set.reference . gpb.convert_with_rules . gpb.cv . gpb.dump . gpb.get.eval.result . gpb.grid.search.tune.parameters . gpb.importance . gpb.interprete . gpb.load . gpb.model.dt.tree . gpb.plot.importance . gpb.plot.interpretation . gpb.plot.part.dep.interact . gpb.plot.partial.dependence . gpb.save . gpb.train . gpb_shared_params . gpboost . group_data . group_data_test . loadGPModel . neg_log_likelihood.GPModel . neg_log_likelihood . predict.GPModel . predict.gpb.Booster . predict_training_data_random_effects.GPModel . predict_training_data_random_effects . readRDS.gpb.Booster . saveGPModel . saveRDS.gpb.Booster . set_optim_params.GPModel . set_optim_params . set_prediction_data.GPModel . set_prediction_data . setinfo . slice . summary.GPModel . y . 
Some associated R codes: GPModel.R . aliases.R . callback.R . gpb.Booster.R . gpb.Dataset.R . gpb.Predictor.R . gpb.convert_with_rules.R . gpb.cv.R . gpb.importance.R . gpb.interprete.R . gpb.model.dt.tree.R . gpb.plot.importance.R . gpb.plot.interpretation.R . gpb.plot.partial.dependence.R . gpb.train.R . gpboost.R . metrics.R . readRDS.gpb.Booster.R . saveRDS.gpb.Booster.R . utils.R .  Full gpboost package functions and examples
Downloads during the last 30 days
01/2001/2101/2201/2301/2401/2501/2601/2701/2801/2901/3001/3102/0102/0202/0302/0402/0502/0602/0702/0802/0902/1002/1102/1202/1302/1402/1502/1602/1702/18Downloads for gpboost0102030405060708090100110120TrendBars
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

distillML  
Model Distillation and Interpretability Methods for Machine Learning Models
Provides several methods for model distillation and interpretability for general black box machine ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
krippendorffsalpha  
Measuring Agreement Using Krippendorff's Alpha Coefficient
Provides tools for applying Krippendorff's Alpha methodology . Both t ...
Download / Learn more Package Citations See dependency  
spnet  
Plotting (Social) Networks on Maps
Facilitates the rendering of networks for which nodes have a specific position on a map cities parti ...
Download / Learn more Package Citations See dependency  
cheem  
Interactively Explore Local Explanations with the Radial Tour
Given a non-linear model, calculate the local explanation. We purpose view the data space, explanat ...
Download / Learn more Package Citations See dependency  
TMDb  
Access to TMDb API
Provides an R-interface to the TMDb API (see TMDb API on < ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA