Other packages > Find by keyword >

gpboost  

Combining Tree-Boosting with Gaussian Process and Mixed Effects Models
View on CRAN: Click here


Download and install gpboost package within the R console
Install from CRAN:
install.packages("gpboost")

Install from Github:
library("remotes")
install_github("cran/gpboost")

Install by package version:
library("remotes")
install_version("gpboost", "1.5.1.2")



Attach the package and use:
library("gpboost")
Maintained by
Fabio Sigrist
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2021-02-17
Latest Update: 2024-02-28
Description:
An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See for more information on the software and Sigrist (2022, JMLR) and Sigrist (2023, TPAMI) for more information on the methodology.
How to cite:
Fabio Sigrist (2021). gpboost: Combining Tree-Boosting with Gaussian Process and Mixed Effects Models. R package version 1.5.1.2, https://cran.r-project.org/web/packages/gpboost. Accessed 21 Nov. 2024.
Previous versions and publish date:
0.4.0 (2021-02-17 21:20), 0.5.0 (2021-03-12 14:20), 0.6.0 (2021-04-21 14:50), 0.6.1 (2021-05-25 12:00), 0.6.3 (2021-06-18 11:00), 0.6.6 (2021-07-14 09:30), 0.6.7 (2021-08-17 18:20), 0.7.0 (2021-12-09 21:50), 0.7.1 (2022-01-15 13:22), 0.7.2 (2022-02-21 12:10), 0.7.3.1 (2022-03-23 14:20), 0.7.3 (2022-03-22 17:20), 0.7.5 (2022-05-05 11:30), 0.7.6.2 (2022-05-09 10:40), 0.7.7 (2022-06-10 15:40), 0.7.8 (2022-07-08 16:00), 0.7.9 (2022-08-25 14:40), 0.7.10 (2022-11-14 09:20), 0.8.0 (2022-12-01 17:40), 0.8.1 (2023-01-19 07:40), 0.8.2 (2023-02-17 18:20), 1.0.0 (2023-03-09 15:00), 1.0.1 (2023-03-10 12:10), 1.2.0 (2023-06-09 15:30), 1.2.1 (2023-06-15 01:20), 1.2.3 (2023-07-16 08:00), 1.2.4 (2023-10-02 17:30), 1.2.5 (2023-10-04 17:40), 1.2.6 (2023-10-24 10:10), 1.2.7 (2023-11-29 17:20), 1.2.8 (2024-01-19 01:10), 1.2.9 (2024-02-19 17:30), 1.3.0 (2024-02-28 09:30), 1.3.1 (2024-03-28 09:40), 1.4.0.1 (2024-04-15 08:40), 1.4.0 (2024-04-11 17:50), 1.5.0 (2024-05-28 11:00), 1.5.1.1 (2024-07-16 17:10), 1.5.1.2 (2024-08-26 20:20), 1.5.1 (2024-06-21 15:40)
Other packages that cited gpboost R package
View gpboost citation profile
Other R packages that gpboost depends, imports, suggests or enhances
Complete documentation for gpboost
Functions, R codes and Examples using the gpboost R package
Some associated functions: GPBoost_data . GPModel . GPModel_shared_params . X . X_test . agaricus.test . agaricus.train . bank . coords . coords_test . dim . dimnames.gpb.Dataset . fit.GPModel . fit . fitGPModel . get_nested_categories . getinfo . gpb.Dataset.construct . gpb.Dataset.create.valid . gpb.Dataset . gpb.Dataset.save . gpb.Dataset.set.categorical . gpb.Dataset.set.reference . gpb.convert_with_rules . gpb.cv . gpb.dump . gpb.get.eval.result . gpb.grid.search.tune.parameters . gpb.importance . gpb.interprete . gpb.load . gpb.model.dt.tree . gpb.plot.importance . gpb.plot.interpretation . gpb.plot.part.dep.interact . gpb.plot.partial.dependence . gpb.save . gpb.train . gpb_shared_params . gpboost . group_data . group_data_test . loadGPModel . neg_log_likelihood.GPModel . neg_log_likelihood . predict.GPModel . predict.gpb.Booster . predict_training_data_random_effects.GPModel . predict_training_data_random_effects . readRDS.gpb.Booster . saveGPModel . saveRDS.gpb.Booster . set_optim_params.GPModel . set_optim_params . set_prediction_data.GPModel . set_prediction_data . setinfo . slice . summary.GPModel . y . 
Some associated R codes: GPModel.R . aliases.R . callback.R . gpb.Booster.R . gpb.Dataset.R . gpb.Predictor.R . gpb.convert_with_rules.R . gpb.cv.R . gpb.importance.R . gpb.interprete.R . gpb.model.dt.tree.R . gpb.plot.importance.R . gpb.plot.interpretation.R . gpb.plot.partial.dependence.R . gpb.train.R . gpboost.R . metrics.R . readRDS.gpb.Booster.R . saveRDS.gpb.Booster.R . utils.R .  Full gpboost package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

pkgdepends  
Package Dependency Resolution and Downloads
Find recursive dependencies of 'R' packages from various sources. Solve the dependencies to obtain ...
Download / Learn more Package Citations See dependency  
deductive  
Data Correction and Imputation Using Deductive Methods
Attempt to repair inconsistencies and missing values in data records by using information from vali ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
crossrun  
Joint Distribution of Number of Crossings and Longest Run
Joint distribution of number of crossings and the longest run in a series of independent Bernoulli ...
Download / Learn more Package Citations See dependency  
RcppHNSW  
'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest Neighbors
'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This package provides a minimal R int ...
Download / Learn more Package Citations See dependency  
SCBiclust  
Identifies Mean, Variance, and Hierarchically Clustered Biclusters
Identifies a bicluster, a submatrix of the data such that the features and observations within the s ...
Download / Learn more Package Citations See dependency  

23,229

R Packages

199,929

Dependencies

62,984

Author Associations

23,230

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA