Other packages > Find by keyword >

future  

Unified Parallel and Distributed Processing in R for Everyone
View on CRAN: Click here


Download and install future package within the R console
Install from CRAN:
install.packages("future")

Install from Github:
library("remotes")
install_github("cran/future")

Install by package version:
library("remotes")
install_version("future", "1.34.0")



Attach the package and use:
library("future")
Maintained by
Henrik Bengtsson
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2015-06-19
Latest Update: 2023-12-22
Description:
The purpose of this package is to provide a lightweight and unified Future API for sequential and parallel processing of R expression via futures. The simplest way to evaluate an expression in parallel is to use `x %<-% { expression }` with `plan(multisession)`. This package implements sequential, multicore, multisession, and cluster futures. With these, R expressions can be evaluated on the local machine, in parallel a set of local machines, or distributed on a mix of local and remote machines. Extensions to this package implement additional backends for processing futures via compute cluster schedulers, etc. Because of its unified API, there is no need to modify any code in order switch from sequential on the local machine to, say, distributed processing on a remote compute cluster. Another strength of this package is that global variables and functions are automatically identified and exported as needed, making it straightforward to tweak existing code to make use of futures.
How to cite:
Henrik Bengtsson (2015). future: Unified Parallel and Distributed Processing in R for Everyone. R package version 1.34.0, https://cran.r-project.org/web/packages/future. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.6.0 (2015-06-19 10:25), 0.7.0 (2015-07-14 20:40), 0.8.0 (2015-09-07 08:46), 0.8.1 (2015-10-05 23:01), 0.8.2 (2015-10-14 23:41), 0.9.0 (2015-12-12 09:13), 0.10.0 (2015-12-31 00:35), 0.11.0 (2016-01-20 09:12), 0.12.0 (2016-02-24 09:11), 0.13.0 (2016-04-14 08:32), 0.14.0 (2016-05-17 01:08), 0.15.0 (2016-06-14 10:31), 1.0.0 (2016-06-24 09:53), 1.0.1 (2016-07-04 09:31), 1.1.0 (2016-10-10 08:28), 1.1.1 (2016-10-11 00:45), 1.2.0 (2016-11-12 14:02), 1.3.0 (2017-02-19 10:53), 1.4.0 (2017-03-13 08:45), 1.5.0 (2017-05-26 08:31), 1.6.0 (2017-08-13 07:33), 1.6.1 (2017-09-09 16:52), 1.6.2 (2017-10-17 00:57), 1.7.0 (2018-02-11 15:26), 1.8.0 (2018-04-08 13:08), 1.8.1 (2018-05-03 06:13), 1.9.0 (2018-07-23 10:00), 1.10.0 (2018-10-17 10:20), 1.11.0 (2019-01-22 00:20), 1.11.1.1 (2019-01-27 00:30), 1.12.0 (2019-03-08 20:32), 1.13.0 (2019-05-09 00:50), 1.14.0 (2019-07-02 10:30), 1.15.0 (2019-11-08 13:20), 1.15.1 (2019-11-25 10:40), 1.16.0 (2020-01-16 16:20), 1.17.0 (2020-04-18 09:40), 1.18.0 (2020-07-09 07:40), 1.19.1 (2020-09-22 18:30), 1.20.1 (2020-11-03 07:40), 1.21.0 (2020-12-10 10:00), 1.22.1 (2021-08-25 11:30), 1.23.0 (2021-10-31 07:30), 1.24.0 (2022-02-19 19:20), 1.25.0 (2022-04-24 09:00), 1.26.1 (2022-05-27 21:20), 1.27.0 (2022-07-22 13:00), 1.28.0 (2022-09-02 15:40), 1.29.0 (2022-11-06 18:40), 1.30.0 (2022-12-16 01:20), 1.31.0 (2023-02-01 09:50), 1.32.0 (2023-03-07 09:10), 1.33.0 (2023-07-01 20:00), 1.33.1 (2023-12-22 08:20), 1.33.2 (2024-03-26 19:00)
Other packages that cited future R package
View future citation profile
Other R packages that future depends, imports, suggests or enhances
Complete documentation for future
Functions, R codes and Examples using the future R package
Some associated functions: ClusterFuture-class . ConstantFuture-class . Future-class . FutureCondition . FutureGlobals . FutureResult . MulticoreFuture-class . MultiprocessFuture-class . UniprocessFuture-class . backtrace . cluster . clusterExportSticky . find_references . future . future.options . futureOf . futureSessionInfo . futures . getExpression . getGlobalsAndPackages . grapes-conditions-grapes . grapes-globals-grapes . grapes-label-grapes . grapes-lazy-grapes . grapes-plan-grapes . grapes-seed-grapes . grapes-stdout-grapes . grapes-tweak-grapes . mandelbrot . multicore . multisession . nbrOfWorkers . nullcon . plan . private_length . re-exports . readImmediateConditions . requestCore . resetWorkers . resolve . resolved . result . run . save_rds . sequential . sessionDetails . signalConditions . sticky_globals . tweak . usedCores . value . 
Some associated R codes: 000.bquote.R . 000.import.R . 000.re-exports.R . ClusterFuture-class.R . ClusterRegistry.R . ConstantFuture-class.R . Future-class.R . FutureCondition-class.R . FutureGlobals-class.R . FutureRegistry.R . FutureResult-class.R . MulticoreFuture-class.R . MultiprocessFuture-class.R . MultisessionFuture-class.R . UniprocessFuture-class.R . backtrace.R . capture_journals.R . cluster.R . conditions_OP.R . connections.R . constant.R . expressions.R . future.R . futureAssign.R . futureAssign_OP.R . futureCall.R . futureOf.R . futureSessionInfo.R . futures.R . globals.R . globals_OP.R . journal.R . label_OP.R . lazy_OP.R . makeClusterPSOCK_args.R . mandelbrot.R . multicore.R . multisession.R . nbrOfWorkers.R . options.R . plan_OP.R . resolve.R . resolved.R . rng_utils.R . seed_OP.R . sequential.R . sessionDetails.R . signalConditions.R . signalEarly.R . stdout_OP.R . stealth_sample.R . sticky_globals.R . tweak.R . tweakExpression.R . tweak_OP.R . utils,conditions.R . utils-immediateCondition.R . utils-marshalling.R . utils.R . uuid.R . value.R . whichIndex.R . zzz.R . zzz.plan.R .  Full future package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA