Other packages > Find by keyword >

funreg  

Functional Regression for Irregularly Timed Data
View on CRAN: Click here


Download and install funreg package within the R console
Install from CRAN:
install.packages("funreg")

Install from Github:
library("remotes")
install_github("cran/funreg")

Install by package version:
library("remotes")
install_version("funreg", "1.2.2")



Attach the package and use:
library("funreg")
Maintained by
John Dziak
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2014-06-21
Latest Update: 2021-10-04
Description:
Performs functional regression, and some related approaches, for intensive longitudinal data (see the book by Walls & Schafer, 2006, Models for Intensive Longitudinal Data, Oxford) when such data is not necessarily observed on an equally spaced grid of times. The approach generally follows the ideas of Goldsmith, Bobb, Crainiceanu, Caffo, and Reich (2011) and the approach taken in their sample code, but with some modifications to make it more feasible to use with long rather than wide, non-rectangular longitudinal datasets with unequal and potentially random measurement times. It also allows easy plotting of the correlation between the smoothed covariate and the outcome as a function of time, which can add additional insights on how to interpret a functional regression. Additionally, it also provides several permutation tests for the significance of the functional predictor. The heuristic interpretation of ``time'' is used to describe the index of the functional predictor, but the same methods can equally be used for another unidimensional continuous index, such as space along a north-south axis. Note that most of the functionality of this package has been superseded by added features after 2016 in the 'pfr' function by Jonathan Gellar, Mathew W. McLean, Jeff Goldsmith, and Fabian Scheipl, in the 'refund' package built by Jeff Goldsmith and co-authors and maintained by Julia Wrobel. The development of the funreg package in 2015 and 2016 was part of a research project supported by Award R03 CA171809-01 from the National Cancer Institute and Award P50 DA010075 from the National Institute on Drug Abuse. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Drug Abuse, the National Cancer Institute, or the National Institutes of Health.
How to cite:
John Dziak (2014). funreg: Functional Regression for Irregularly Timed Data. R package version 1.2.2, https://cran.r-project.org/web/packages/funreg. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.1 (2014-06-21 01:11), 1.2 (2016-08-24 18:38)
Other packages that cited funreg R package
View funreg citation profile
Other R packages that funreg depends, imports, suggests or enhances
Complete documentation for funreg
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA