Other packages > Find by keyword >

fastTS  

Fast Time Series Modeling for Seasonal Series with Exogenous Variables
View on CRAN: Click here


Download and install fastTS package within the R console
Install from CRAN:
install.packages("fastTS")

Install from Github:
library("remotes")
install_github("cran/fastTS")

Install by package version:
library("remotes")
install_version("fastTS", "1.0.2")



Attach the package and use:
library("fastTS")
Maintained by
Ryan Andrew Peterson
[Scholar Profile | Author Map]
First Published: 2024-02-07
Latest Update: 2024-02-07
Description:
An implementation of sparsity-ranked lasso and related methods for time series data. This methodology is especially useful for large time series with exogenous features and/or complex seasonality. Originally described in Peterson and Cavanaugh (2022) in the context of variable selection with interactions and/or polynomials, ranked sparsity is a philosophy with methods useful for variable selection in the presence of prior informational asymmetry. This situation exists for time series data with complex seasonality, as shown in Peterson and Cavanaugh (2024) , which also describes this package in greater detail. The sparsity-ranked penalization methods for time series implemented in 'fastTS' can fit large/complex/high-frequency time series quickly, even with a high-dimensional exogenous feature set. The method is considerably faster than its competitors, while often producing more accurate predictions. Also included is a long hourly series of arrivals into the University of Iowa Emergency Department with concurrent local temperature.
How to cite:
Ryan Andrew Peterson (2024). fastTS: Fast Time Series Modeling for Seasonal Series with Exogenous Variables. R package version 1.0.2, https://cran.r-project.org/web/packages/fastTS. Accessed 06 May. 2025.
Previous versions and publish date:
0.1.2 (2024-02-07 19:20), 1.0.0 (2024-03-07 19:00), 1.0.1 (2024-03-28 22:40)
Other packages that cited fastTS R package
View fastTS citation profile
Other R packages that fastTS depends, imports, suggests or enhances
Complete documentation for fastTS
Functions, R codes and Examples using the fastTS R package
Some associated functions: fastTS . internal . predict.fastTS . uihc_ed_arrivals . 
Some associated R codes: data.R . fastTS.R . helpers.R . prediction.R .  Full fastTS package functions and examples
Downloads during the last 30 days
04/0604/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/1804/1904/2004/2104/2204/2304/2404/2504/2604/2704/2804/2904/3005/0105/0205/0305/04Downloads for fastTS24681012141618202224TrendBars

Today's Hot Picks in Authors and Packages

netUtils  
A Collection of Tools for Network Analysis
Provides a collection of network analytic (convenience) functions which are missing in other standar ...
Download / Learn more Package Citations See dependency  
rotations  
Working with Rotation Data
Tools for working with rotational data, including simulation from the most commonly used distributi ...
Download / Learn more Package Citations See dependency  
tbrf  
Time-Based Rolling Functions
Provides rolling statistical functions based on date and time windows instead of n-lagged observatio ...
Download / Learn more Package Citations See dependency  
simfam  
Simulate and Model Family Pedigrees with Structured Founders
The focus is on simulating and modeling families with founders drawn from a structured population (f ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
tashu  
Analysis and Prediction of Bicycle Rental Amount
Provides functions for analyzing citizens' bicycle usage pattern and predicting rental amount on spe ...
Download / Learn more Package Citations See dependency  

24,205

R Packages

207,311

Dependencies

65,312

Author Associations

24,206

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA