Other packages > Find by keyword >

daltoolbox  

Leveraging Experiment Lines to Data Analytics
View on CRAN: Click here


Download and install daltoolbox package within the R console
Install from CRAN:
install.packages("daltoolbox")

Install from Github:
library("remotes")
install_github("cran/daltoolbox")

Install by package version:
library("remotes")
install_version("daltoolbox", "1.1.727")



Attach the package and use:
library("daltoolbox")
Maintained by
Eduardo Ogasawara
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2023-06-30
Latest Update: 2023-10-25
Description:
The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) .
How to cite:
Eduardo Ogasawara (2023). daltoolbox: Leveraging Experiment Lines to Data Analytics. R package version 1.1.727, https://cran.r-project.org/web/packages/daltoolbox. Accessed 18 Feb. 2025.
Previous versions and publish date:
1.0.77 (2023-06-30 13:40), 1.0.707 (2023-07-18 05:10), 1.0.717 (2023-07-22 12:40), 1.0.727 (2023-10-25 23:40), 1.0.747 (2024-03-25 08:20), 1.0.767 (2024-04-01 00:30), 1.0.787 (2024-11-03 06:30)
Other packages that cited daltoolbox R package
View daltoolbox citation profile
Other R packages that daltoolbox depends, imports, suggests or enhances
Complete documentation for daltoolbox
Functions, R codes and Examples using the daltoolbox R package
Some associated functions: Boston . MSE.ts . action.dal_transform . action . adjust_class_label . adjust_data.frame . adjust_factor . adjust_matrix . adjust_ts_data . autoenc_encode . autoenc_encode_decode . categ_mapping . cla_dtree . cla_knn . cla_majority . cla_mlp . cla_nb . cla_rf . cla_svm . cla_tune . classification . clu_tune . cluster . cluster_dbscan . cluster_kmeans . cluster_pam . clusterer . dal_base . dal_learner . dal_transform . dal_tune . data_sample . do_fit . do_predict . dt_pca . evaluate . fit.cla_tune . fit.cluster_dbscan . fit . fit_curvature_max . fit_curvature_min . inverse_transform . k_fold . minmax . outliers . plot_bar . plot_boxplot . plot_boxplot_class . plot_density . plot_density_class . plot_groupedbar . plot_hist . plot_lollipop . plot_pieplot . plot_points . plot_radar . plot_scatter . plot_series . plot_stackedbar . plot_ts . plot_ts_pred . predictor . reg_dtree . reg_knn . reg_mlp . reg_rf . reg_svm . reg_tune . regression . sMAPE.ts . sample_random . sample_stratified . select_hyper.cla_tune . select_hyper . select_hyper.ts_tune . set_params.default . set_params . sin_data . smoothing . smoothing_cluster . smoothing_freq . smoothing_inter . sub-.ts_data . train_test . train_test_from_folds . transform . ts_arima . ts_conv1d . ts_data . ts_elm . ts_head . ts_knn . ts_lstm . ts_mlp . ts_norm_an . ts_norm_diff . ts_norm_ean . ts_norm_gminmax . ts_norm_swminmax . ts_projection . ts_reg . ts_regsw . ts_rf . ts_sample . ts_svm . ts_tune . zscore . 
Some associated R codes: cla_classification.R . cla_dtree.R . cla_knn.R . cla_majority.R . cla_mlp.R . cla_nb.R . cla_rf.R . cla_svm.R . cla_tune.R . clu_clusterer.R . clu_dbscan.R . clu_kmeans.R . clu_pam.R . clu_tune.R . dal_adjust.R . dal_base.R . dal_learner.R . dal_predictor.R . dal_tune.R . data.R . globals.R . graphics.R . reg_dtree.R . reg_knn.R . reg_mlp.R . reg_regression.R . reg_rf.R . reg_svm.R . reg_tune.R . trans_autoenc_encode.R . trans_autoenc_encode_decode.R . trans_categ_mapping.R . trans_dt_pca.R . trans_fit_curvature_max.R . trans_fit_curvature_min.R . trans_norm_minmax.R . trans_norm_zscore.R . trans_outliers.R . trans_sample.R . trans_sample_random.R . trans_sample_strat.R . trans_smoothing.R . trans_smoothing_cluster.R . trans_smoothing_freq.R . trans_smoothing_inter.R . trans_transform.R . ts_arima.R . ts_conv1d.R . ts_data.R . ts_elm.R . ts_knn.R . ts_lstm.R . ts_mlp.R . ts_norm_an.R . ts_norm_diff.R . ts_norm_ean.R . ts_norm_gminmax.R . ts_norm_swminmax.R . ts_projection.R . ts_reg.R . ts_regsw.R . ts_rf.R . ts_sample.R . ts_svm.R . ts_tune.R .  Full daltoolbox package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

clustMixType  
k-Prototypes Clustering for Mixed Variable-Type Data
Functions to perform k-prototypes partitioning clustering for mixed variable-type data according to ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
ppmf  
Read Census Privacy Protected Microdata Files
Implements data processing described in to align modern differentially ...
Download / Learn more Package Citations See dependency  
fclust  
Fuzzy Clustering
Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visuali ...
Download / Learn more Package Citations See dependency  
readxlsb  
Read 'Excel' Binary (.xlsb) Workbooks
Import data from 'Excel' binary (.xlsb) workbooks into R. ...
Download / Learn more Package Citations See dependency  
MOSS  
Multi-Omic Integration via Sparse Singular Value Decomposition
High dimensionality, noise and heterogeneity among samples and features challenge the omic integrat ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA