Other packages > Find by keyword >

daltoolbox  

Leveraging Experiment Lines to Data Analytics
View on CRAN: Click here


Download and install daltoolbox package within the R console
Install from CRAN:
install.packages("daltoolbox")

Install from Github:
library("remotes")
install_github("cran/daltoolbox")

Install by package version:
library("remotes")
install_version("daltoolbox", "1.1.727")



Attach the package and use:
library("daltoolbox")
Maintained by
Eduardo Ogasawara
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2023-06-30
Latest Update: 2023-10-25
Description:
The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) .
How to cite:
Eduardo Ogasawara (2023). daltoolbox: Leveraging Experiment Lines to Data Analytics. R package version 1.1.727, https://cran.r-project.org/web/packages/daltoolbox. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.0.77 (2023-06-30 13:40), 1.0.707 (2023-07-18 05:10), 1.0.717 (2023-07-22 12:40), 1.0.727 (2023-10-25 23:40), 1.0.747 (2024-03-25 08:20), 1.0.767 (2024-04-01 00:30), 1.0.787 (2024-11-03 06:30)
Other packages that cited daltoolbox R package
View daltoolbox citation profile
Other R packages that daltoolbox depends, imports, suggests or enhances
Complete documentation for daltoolbox
Functions, R codes and Examples using the daltoolbox R package
Some associated functions: Boston . MSE.ts . action.dal_transform . action . adjust_class_label . adjust_data.frame . adjust_factor . adjust_matrix . adjust_ts_data . autoenc_encode . autoenc_encode_decode . categ_mapping . cla_dtree . cla_knn . cla_majority . cla_mlp . cla_nb . cla_rf . cla_svm . cla_tune . classification . clu_tune . cluster . cluster_dbscan . cluster_kmeans . cluster_pam . clusterer . dal_base . dal_learner . dal_transform . dal_tune . data_sample . do_fit . do_predict . dt_pca . evaluate . fit.cla_tune . fit.cluster_dbscan . fit . fit_curvature_max . fit_curvature_min . inverse_transform . k_fold . minmax . outliers . plot_bar . plot_boxplot . plot_boxplot_class . plot_density . plot_density_class . plot_groupedbar . plot_hist . plot_lollipop . plot_pieplot . plot_points . plot_radar . plot_scatter . plot_series . plot_stackedbar . plot_ts . plot_ts_pred . predictor . reg_dtree . reg_knn . reg_mlp . reg_rf . reg_svm . reg_tune . regression . sMAPE.ts . sample_random . sample_stratified . select_hyper.cla_tune . select_hyper . select_hyper.ts_tune . set_params.default . set_params . sin_data . smoothing . smoothing_cluster . smoothing_freq . smoothing_inter . sub-.ts_data . train_test . train_test_from_folds . transform . ts_arima . ts_conv1d . ts_data . ts_elm . ts_head . ts_knn . ts_lstm . ts_mlp . ts_norm_an . ts_norm_diff . ts_norm_ean . ts_norm_gminmax . ts_norm_swminmax . ts_projection . ts_reg . ts_regsw . ts_rf . ts_sample . ts_svm . ts_tune . zscore . 
Some associated R codes: cla_classification.R . cla_dtree.R . cla_knn.R . cla_majority.R . cla_mlp.R . cla_nb.R . cla_rf.R . cla_svm.R . cla_tune.R . clu_clusterer.R . clu_dbscan.R . clu_kmeans.R . clu_pam.R . clu_tune.R . dal_adjust.R . dal_base.R . dal_learner.R . dal_predictor.R . dal_tune.R . data.R . globals.R . graphics.R . reg_dtree.R . reg_knn.R . reg_mlp.R . reg_regression.R . reg_rf.R . reg_svm.R . reg_tune.R . trans_autoenc_encode.R . trans_autoenc_encode_decode.R . trans_categ_mapping.R . trans_dt_pca.R . trans_fit_curvature_max.R . trans_fit_curvature_min.R . trans_norm_minmax.R . trans_norm_zscore.R . trans_outliers.R . trans_sample.R . trans_sample_random.R . trans_sample_strat.R . trans_smoothing.R . trans_smoothing_cluster.R . trans_smoothing_freq.R . trans_smoothing_inter.R . trans_transform.R . ts_arima.R . ts_conv1d.R . ts_data.R . ts_elm.R . ts_knn.R . ts_lstm.R . ts_mlp.R . ts_norm_an.R . ts_norm_diff.R . ts_norm_ean.R . ts_norm_gminmax.R . ts_norm_swminmax.R . ts_projection.R . ts_reg.R . ts_regsw.R . ts_rf.R . ts_sample.R . ts_svm.R . ts_tune.R .  Full daltoolbox package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA