Other packages > Find by keyword >

cvms  

Cross-Validation for Model Selection
View on CRAN: Click here


Download and install cvms package within the R console
Install from CRAN:
install.packages("cvms")

Install from Github:
library("remotes")
install_github("cran/cvms")

Install by package version:
library("remotes")
install_version("cvms", "1.6.3")



Attach the package and use:
library("cvms")
Maintained by
Ludvig Renbo Olsen
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2019-07-02
Latest Update: 2024-02-27
Description:
Cross-validate one or multiple regression and classification models and get relevant evaluation metrics in a tidy format. Validate the best model on a test set and compare it to a baseline evaluation. Alternatively, evaluate predictions from an external model. Currently supports regression and classification (binary and multiclass). Described in chp. 5 of Jeyaraman, B. P., Olsen, L. R., & Wambugu M. (2019, ISBN: 9781838550134).
How to cite:
Ludvig Renbo Olsen (2019). cvms: Cross-Validation for Model Selection. R package version 1.6.3, https://cran.r-project.org/web/packages/cvms. Accessed 01 Feb. 2025.
Previous versions and publish date:
0.1.0 (2019-07-02 17:10), 0.1.1 (2019-07-20 15:50), 0.1.2 (2019-08-05 16:50), 0.2.0 (2019-09-07 18:20), 0.3.0 (2019-09-29 06:20), 0.3.1 (2019-10-03 12:50), 0.3.2 (2019-12-02 00:10), 1.0.0 (2020-04-14 08:50), 1.0.1 (2020-04-19 11:30), 1.0.2 (2020-05-29 02:00), 1.1.0 (2020-10-07 23:20), 1.2.0 (2020-10-18 23:50), 1.2.1 (2021-02-17 15:00), 1.3.0 (2021-06-07 16:40), 1.3.1 (2021-06-17 13:00), 1.3.2 (2021-10-06 16:10), 1.3.3 (2021-11-14 18:20), 1.3.4 (2022-07-15 16:40), 1.3.5 (2022-08-26 15:54), 1.3.6 (2022-10-12 14:42), 1.3.7 (2022-11-24 01:20), 1.3.8 (2023-01-05 22:00), 1.3.9 (2023-01-26 16:00), 1.4.0 (2023-06-04 16:10), 1.4.1 (2023-06-11 10:20), 1.5.0 (2023-06-18 13:50), 1.6.0 (2023-06-29 23:50), 1.6.1 (2024-02-27 21:50), 1.6.2 (2024-07-31 12:41)
Other packages that cited cvms R package
View cvms citation profile
Other R packages that cvms depends, imports, suggests or enhances
Complete documentation for cvms
Functions, R codes and Examples using the cvms R package
Some associated functions: baseline . baseline_binomial . baseline_gaussian . baseline_multinomial . binomial_metrics . combine_predictors . compatible.formula.terms . confusion_matrix . cross_validate . cross_validate_fn . cvms . evaluate . evaluate_residuals . font . gaussian_metrics . model_functions . most_challenging . multiclass_probability_tibble . multinomial_metrics . musicians . participant.scores . plot_confusion_matrix . plot_metric_density . plot_probabilities . plot_probabilities_ecdf . precomputed.formulas . predict_functions . predicted.musicians . preprocess_functions . process_info_binomial . reconstruct_formulas . render_toc . select_definitions . select_metrics . simplify_formula . sum_tile_settings . summarize_metrics . update_hyperparameters . validate . validate_fn . wines . 
Some associated R codes: baseline.R . baseline_binomial.R . baseline_gaussian.R . baseline_multinomial.R . baseline_wrappers.R . call_validate.R . choosing_metrics_functions.R . combine_predictors.R . combine_predictors_prepare_args.R . computational_grid.R . confusion_matrix.R . cross_validate.R . cross_validate_fn.R . cross_validate_list.R . data_documentation.R . evaluate.R . evaluate_predictions_binomial.R . evaluate_predictions_gaussian.R . evaluate_predictions_multinomial.R . evaluate_residuals.R . extract_model_effects.R . extract_probabilities_of.R . extract_special_fn_specific_hparams.R . fit_model.R . fit_predict_model_fn.R . get_nested_model_coefficients.R . helpers.R . internal_evaluate_model.R . internal_evaluate_predictions.R . metrics.R . model_functions.R . most_challenging.R . multiclass_probability_tibble.R . nesting_predictions.R . package_info.R . plot_confusion_matrix.R . plot_metric_density.R . plot_probabilities.R . plot_probabilities_ecdf.R . plot_probability_violins.R . plotting_utilities.R . predict_functions.R . prepare_evaluation.R . prepare_train_test.R . preprocess_functions.R . process_info.R . reconstruct_formulas.R . run_model_fitting.R . run_prediction_process.R . run_quietly.R . select_definitions.R . select_metrics.R . set_info_cols.R . set_metrics.R . simplify_formula.R . softmax.R . summarize_metrics.R . table_of_content_markdown.R . update_hyperparameters.R . update_model_specifics.R . validate.R . validate_fn.R . validate_fold.R . validate_list.R .  Full cvms package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  
extraoperators  
Extra Binary Relational and Logical Operators
Speed up common tasks, particularly logical or relational comparisons and routine follow up tasks s ...
Download / Learn more Package Citations See dependency  
bayesDP  
Implementation of the Bayesian Discount Prior Approach for Clinical Trials
Functions for data augmentation using the Bayesian discount prior method for single arm and two-arm ...
Download / Learn more Package Citations See dependency  
tidyxl  
Read Untidy Excel Files
Imports non-tabular from Excel files into R.Exposes cell content, position and formatting in a tidy ...
Download / Learn more Package Citations See dependency  
longit  
High Dimensional Longitudinal Data Analysis Using MCMC
High dimensional longitudinal data analysis with Markov Chain Monte Carlo(MCMC). Currently support ...
Download / Learn more Package Citations See dependency  

23,580

R Packages

204,057

Dependencies

63,980

Author Associations

23,581

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA