Other packages > Find by keyword >

crso  

Cancer Rule Set Optimization ('crso')
View on CRAN: Click here


Download and install crso package within the R console
Install from CRAN:
install.packages("crso")

Install from Github:
library("remotes")
install_github("cran/crso")

Install by package version:
library("remotes")
install_version("crso", "0.1.1")



Attach the package and use:
library("crso")
Maintained by
Michael Klein
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2019-07-07
Latest Update: 2019-07-07
Description:
An algorithm for identifying candidate driver combinations in cancer. CRSO is based on a theoretical model of cancer in which a cancer rule is defined to be a collection of two or more events (i.e., alterations) that are minimally sufficient to cause cancer. A cancer rule set is a set of cancer rules that collectively are assumed to account for all of ways to cause cancer in the population. In CRSO every event is designated explicitly as a passenger or driver within each patient. Each event is associated with a patient-specific, event-specific passenger penalty, reflecting how unlikely the event would have happened by chance, i.e., as a passenger. CRSO evaluates each rule set by assigning all samples to a rule in the rule set, or to the null rule, and then calculating the total statistical penalty from all unassigned event. CRSO uses a three phase procedure find the best rule set of fixed size K for a range of Ks. A core rule set is then identified from among the best rule sets of size K as the rule set that best balances rule set size and statistical penalty. Users should consult the 'crso' vignette for an example walk through of a full CRSO run. The full description, of the CRSO algorithm is presented in: Klein MI, Cannataro V, Townsend J, Stern DF and Zhao H. "Identifying combinations of cancer driver in individual patients." BioRxiv 674234 [Preprint]. June 19, 2019. . Please cite this article if you use 'crso'.
How to cite:
Michael Klein (2019). crso: Cancer Rule Set Optimization ('crso'). R package version 0.1.1, https://cran.r-project.org/web/packages/crso. Accessed 22 Dec. 2024.
Previous versions and publish date:
No previous versions
Other packages that cited crso R package
View crso citation profile
Other R packages that crso depends, imports, suggests or enhances
Complete documentation for crso
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA